RD;A145 869 AUTOMATING SOFTWARE DESIGN HETRICS(U) CHRRLES STARK
D MA P A SZULEWSKI ET AL.

RAPER LAB INC CAMBRIDGE

FEB 84 CSDL-R-1662 RADC-TR-84-27 F30682 -82-C-81308

UNCLASSIFIED

F/G 972

I ST A SR MY A I B S T SR B WL I el DA DA .“..-L"T

| ~X] Ig 2.5

——— Iz-z
L L R

. £

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963 = A

o0

e T

» A e Lt e e y
'.:.'fn.ts'_a.'f I f:@f;ﬁﬁl’.;f':t\ii

AD-A145 869

OTIC FILE copy

RADC-TR-84-27
Final Technical Report
February 1984

AUTOMATING SOFTWARE DESIGN METRICS

The Charles Stark Draper Laboratory, Inc.

Paul A. Szulewski, Nancy M. Sodano, Andrew J. Rosner
and J. B. DeWolf

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED DT‘ C
N TLECTE M L

3

k

> sePiswes & -

R
E
.- -..' .'.‘

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

84 09 05 008


~~~~~~

y
o
- = - ";‘
.
This report has been reviewed by the RADC Public Affairs Office (PA) and ’]
is releasable to the National Technical Information Service (NTIS). At NTIS S
it will be releasable to the general public, including foreign nations. s ]‘
- ..|
RADC-TR-84-27 has been reviewed and is approved for publication. :-"'."-:::4
- ‘-.-'4.
/'\ el .:1
APPROVED: ﬁ%/ ’ (Wo S
JOSEPH P. CAVANO AN
. e
Project Engineer - ®
o
R
LR~
-:_'-:,q
"
7 .
i /
APPROVED:  Jr ;Y Léié}\ . @,
RAYMOND P. URTZ, JR. i
Acting Technical Director KRS
Command and Control Division :.-:'.-:;

[
.
.
»
A

e
.:_ :;_.‘
FOR THE COMMANDER: ‘ e
Fn
JOHN A. RITZ :‘\:
Acting Chief, Plans Office OGN
AT et
NN
X |
_®
b -
b 7
b S
o
po
F:‘\ - '.'.]
PRl .y
@ If your address has changed or 1f you wish to be removed from the RADC P..
':-’.j_. mailing list, or if the addressee is no longer employed by your organization, o ',-f-T
o please notify RADC (COEE ) Griffiss AFB NY 13441. This will assist us in T
;e maintaining a current mailing list. i
o T
:. Do not return copies of this report unless contractual obligations or notices vl
," on a specific document requires that it be returned. .._!_.,




ES
.

hd

s
\}

ol

a0

)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPOAT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
20 SECURITY CLASSIFICATION AUTHQRITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution

2. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

unlinited

4. PEAFORMING ORGANIZATION REPORT NUMBER(S)
CSDL-R-1662

8. MONITORING ORGANIZATION REPOAT NUMBER(S)
RADC-TR-84-27

b. OFFICE SYMBOL
(If applicedle)

6a NAME OF PERFORMING ORGANIZATION
The Charles Stark Draper
Laboratory, Inc.

7a. NAME OF MONITORING ORGANIZATION

Rome Air Development Center (COFE)

6c. ADORESS (City. State and ZIP Code)
555 Technology Square
Cambridge A 02139

7. ADORESS (City. Stats and ZIP Code)
Griffiss AFB NY 13441

8a. NAME OF FUNDING/SPONSOQRING 8b. OFFICE SYMBOL
ORGANIZATION (If applicabie)

Rome Air Development Center COEE

9. PROCUREMENT iINSTRUMENT IDENTIFICATION NUMBER

F30602-82-C-0130

8c ADDRESS (City, State and ZIP Code)

Criffiss AFB NV 13441

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WOAK UNIT
ELEMENT NO. NO. NO. NO.
62702F 5581 20 42

3. TITLE (Include Security Classification}
AUTOMATING SOFTVARE DESIGN METRICS

12. PERSONAL AUTHOR(S)
Paul A. Szulewski, Nancy M Sodano, Andrew J.

Rosner, J. B, DeWolf

13a TYPE OF REPORT 130. TIME COVERED

14. DATE OF REPORT (Yr, Mo., Dey) 15. PAGE COUNT

o

*r

>

- Final eaom _Sep82 1o _Sep83 February 1984 164
o 16. SUPPLEMENTARY NOTATION - o
e
-7
_‘..."f 17, COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessery and idendify by block number)
_ EIELD GROUP sSuUS. GA. Software Design Metrics Software Nuality ‘feasurements i
v, N9 02 Software Science Automated Design Tools o
. 19, ABSTRACT (Continue on reverse if nacessary and identify by dlock numbder) STy
._:" JThe Rome Air Development Center has developed the Softwarc Nuality Tramework as a means to *o i}
oy specify software quality goals and measure software quality. Much of the work to date has k-,'):\-:
:‘4 focused on metrics applicable to software code. This report describes an effort undertaken :\-.,‘.:_
4 to measure the quality of software products carlier in the software develonment life cycle, e
) during the design phase, and to automate the capture of metric data from design media. ]
- N
e W
..:- Metrics of software quality, primarily those related to the criterion simplicity (or con- -:"‘:i
AR versely, complexity), were reviewed. This review includes those metrics previously devel- IS
.‘-: ! oped in the Software Quality Framework. Two metrics, Halstead's Software Science and :"."“‘-
::. McCabe's Cyclomatic Complexity were chosen for their amenability to measurement during ._._..4'
~ desizn and their potential for automation. Two design media were used: Design Aids for :.-.-.1‘
® Real-Time Systems ‘(DARTS)' an experimental automated design tool developed at the Charles o
SAE Stark Draper Laboratory; and Ada&as a program design language,(PDL). \_.‘
-'.. /T . v‘\h U
":-.' 20. OISTAIBUTION/AVAILABILITY OF ASSTRACT . Al:‘rnAC'rsecumrvkussmuﬂou 5.-:
.-._. . Ao
N uncLassiFIg0/UNLIMITED (3 same as mer. O otic usens O UNCLASSIFIFD \ L.\-:E
. 226 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL :~":- W™
- (Include Area Code) e
! Joseph P. Cavano (315)330-7834 PADC/COTF. .
o W AT
-:‘.. OD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. IMCLASSTFIED .'_:-‘_:.'
"" SECURITY CLASSIFICATION OF THIS PAGE N
e
v PR
A
a‘ '\‘_-
.




t J’.’ . .. . ..' B

@

YN

]

%

s

Pl

o,
A
E

P

-""

[3
-

e L B Ty AT WM T W YR ™ -—w T T o
AR SN AT g 7_._..u__._~ RO AT g PR A Rt S g A - LA e aie 2y
. - v . -t . - -t M

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Automatic measurement of the Halstead and McCabe metrics was implemented as an analysis
capability of DARTS. Software designs were encoded into DARTS and subsequently measured
for quality and other measurable parameters. These experiments provide some evidence that
early measurement can supply both static quality assessment and project planning data which
is useful information for managers and designers alike. The Halstead metric was also
manually applied to a textbook design represented in an Ada PDL. This experiment showed
that it is feasible to use Ada as a design medium, that Halstead metric data can be cap-
tured from an Ada Design, and that if an automated Ada PDL is used, there is potential for
automated measurement.

Finally, a methodology was proposed for using design metrics in support of an integrated
software development environment. This methodology was shown to be capable of providing
early measures of software quality, and other planning estimates like delivered source
instructions, costs, and schedules.

Ada is a registered trademark of the US Department of Defense (AJPO).

UNCLASSITTED

SECURITY CLASSIFICATION OFf THIS PAGE

e T T N
LSRN

4
. 4

'{.‘.I‘F(’;“-' .l
PP A

XN
VAR
X

Py Ty % X Ay op sy
s N i :
;

L i |

L AR N ey}
L)

-

~r,er
[

y Y % N

o)

g




16
A4
X
o
.\,'\_'.
N
> .
NN
{+
< TABLE OF CONTENTS
Section Page
. » G2 S
1.0 INTRODUCTION  + « = « « o o o = o o o o o o o o o s o s o o s s oo 1 Ry
L~ 1.1 Report Organization e ! !\\‘;s_._
' ) 1.2 HiStOrical PersSPeCtiVe « « « o « o o o o o o o o o o o« o o o« o o 2 -
.:~f' . 1.2.1 The Software Quality Framework . . « o« « « « o « « o o« « o« « 2 ';&-‘.:-:
-7 1.2.2 Metrics of Software QUality  « « « + o« o o o o = = o « o « + 4 hSCY
b 1.2.3 Automated Software Design Tools e e e e 8 o o s s o o s o o 5
x 1.2.3.1 Software Design Media c e s o s o s s s e s s s e e e 5 ...
1-: 1.2.3.2 Automated Program Design Languages e e o o o o o s o o o 6 o
f-, 1.2.3.3 Automated Requirements and Design Languages s e e e o . 6 .'.\y;'
Y 1.2.3.4 Design Aids for Real-Time Systems (DARTS) e e e e e e 7 f-.:’:\
_.f: 1.3 Project OVEIVIEW « « v « o o o = « o o o o « « o o « « ¢ « o« « o« 7 AR
v 1.3.1 Research Objectives Y - | :.-::.f::
; 1.3.2 Technical APPrOACN .« « « o = « « + « « o o o o « o « « o« « . B ‘.
‘. 2.0 On The Development, Use, and Automation of Design Metrics . 5 | RN
:.'- 2.1 A Context for Metrics in The Development Process S | .':\':\
\ 2.1.1 A Software Development Process X¥odel . . + . « « « « « . . . 12 DR
o 2.1.2 The Software Development Life Cycle T RN
o 2.1.3 Using Metrics During Software Development e e e e e e .. 14 ROt
B 2.2 Selecting Metrics for Automatic Measurement During Design . oo 15 oSy
( 2.2.1 A Survey of Recent Metrics Literature e ®
- 2.2.2 McCabe's Cyclomatic Complexity Metric e e e e e e e e e .. 16 ."“T
-:: 2.2.2.1 Cyclomatic Complexity Metric Definition e e e e e ... 16 A
25 2.2.3 Halstead's Software Science Metrics Gt e e e e e e ... .. 18 S
s 2.2.3.1 Software Science DefinitioRS . « « « « « « « « o « o . . 18 e
2 2.2.3.2 A Generalized Halstead Technique . . « « « « « « « « . . 19 e
I 2.2.3.3 Interpreting Software Science Metrics e e e e e e ... 20 :f;.:_-
) 2.2.4 Distinguishing Metrics by Phase and Automation Potential . . 21 e
2708 2.2.5 Evaluation of Candidate Metrics 1 TR
=Y 2.2.5.1 NOtes ON TAble 5 .+ + & o « o « o s o + s o « o o« s o o » 27 VA
o 2.2.6 Metric Automation Potential Summary e 1 WY
-:’ 2.3 Design MetriCs and DARTS  « « « o o o o o o o o o o o = o« o o« « o 37 SO
. 2.3.1 McCabe's Cyclomatic Complexity Metric B ¥4 't-"
:.: 2.3.1.1 REQUITEMENES  « o = « « v = o s o o o« « o o o « o o « « o 37 -;}\
® 2.3.1.2 The DARTS Implementation of McCabe's Metric S 1. -
<~ 2.3.2 Halstead's Software Science Metrics L .._
o 2.3.2.1 REQUITEMENES  + « o o o o 2 o o o o o o o o o o« o o o « . 43 -:.-..-
s 2.3.2.2 The DARTS Implementation of Halstead's Metrics e e .. b4 :..-:{-:
JABER 2.4 Using The DARTS DesSign MELTiCS v « « o o + o o o o o o o o« « « . 45 RS
R 2.4.1 Simple Examples e e e e e e e e e e e e e e e e e e, b5 -::.-".
" RSN
- o~ al
. Contents i ol
- OGN
b - RSN
:_\ C.\! .
) k_-\.'s
4 ' ‘.'-
:* ‘I{\.-
~ LSRN
‘ L
::': 'f:'l‘
Py A,
A R
% R
» WO
H -q_" _.: -',.-t
PR
. s,

W

AR N R AL AL R AL L LU P S A e S o ;
s _.»}_.-_‘r:e:'.i:».\r:.-:a‘.\ \.':'.0:'.'_‘.' '.-‘\.'\.-\¢\~\:~":-\ }: AR
Lo ~'..J'\(‘.‘-'* ol q'{ﬁ-' ‘w‘;-" N < ‘g. < \vf‘.'-"\ '.‘J‘.:‘\:"

A ARE S50 A0 5 TR LA MBASSISETE LA SN o 08




IR ral B TR e P ST AR g

1.1
.1.2
1.3
1.4
1.5

CACM Example 14a s s s s e e e s e s e s s »
CACM Example 14b e o s e o o s e e s e o o
c
(of

ACM EXample 158 . - - = « o o« o « o o + « &«

ACM Example 15b .

Analysis of the Simple Examples Experiment .

[N
.

Complex Examples e o e o o e s o o
.2.1 The Experiment Controller Example . s s e .
g

N
.
NN,

ign Metrics and Ada e s e o o o s o 6 s 8 e o o

otivation e e e s e e e e s e e e e e e e s
The Object-Oriented Design Methodology « o s s .
Using Ada as a PDL with the Object-Oriented Design
3.1 Architectural Design “ e s e e e e e e e
3.2 Detailed Design e e o o o o o s o s o s o @
4

[ V]
. .
NN NMNNMNNONNOOOLDNNLNNNDNN
.
OO LEOUWNFOOLEDND LS DD

Using Halstead Metrics on Ada e s o o o o s & @
1 The Counting Method e o 6 o o o o o o s e
2 Possible Adjustments to the Counting Method

.3 Automation Potential e e s e e s s s e e e s
4
5

L X

-

4
4

Example e e s e s e s s e e e e e e e s e e
Analysis of the Counting Leaves Example .

4
4

3.0 Using Design Metrics, A Supporting Methodology . . . . .

3.1 Projecting Project Costs and Schedules e o s s o o o
3.1.1 An Algorithmic Estimation Method e e e o e v e .
3.1.2 An Example e s s o s s e s s o s e s 2 e w s e e

3.2 Use of Design Metrics e s s a o e+ o s s s e & o s

4.0 Conclusions e o o o s o 6 s 8 6 s e 8 s e e s e s s = .

5.0 Directions for Further Research s 6 6 8 o 6 0o e o s o &

Appendix

Appendix A. GLOSSARY OF RELATED ACRONYMS AND TERMS “ e s e

Appendix B. Example Darts Trees e o o 5 o 4 o o o » o a o »

Appendix C. DARTS PL/I Halstead Modules e s s e s s e s

ii

C.1l Design Trees e o o o o o s e s 4 s o v e 5 e e e o o

C.1.1 Node 8 e e o s e e v s m e s e s s e ae e e e
C.1.2 Node S
C.1.3 Node S
C.1.4 Node 9.
C.1.5 Node S
c.1l.6 9
c.1l.7 9

Node
Node

Automating Software Design Metrics

.2.2 Metric Analysis of the Experiment Controller Designs

. . 45
.. 46
. . 48
. . S50
.. 52
.. 52
. . 54
. . 54
.. 56
.. 67
.. 67
. 68
.. 1
.. 12
.. 72
.. 12
.. T4
.. 15
.. 75
.. 176
. 103
. 103
. 104
. 107
. 108
. 111
. 113
Page

. 115
. 117
. 123
. 123
. 123
. 123
. 126
. 126
. 127
. 127
128

€




LR N )
‘~-‘-‘;'-‘~\-\.‘~. v te W
+

oY

LA ARAS AR A0 A be ko ba e e 30 B 240 B A v v
R CRg A A TR A P v A A Jeve S AT A A e S e ) . S S0 e 0 4 TRV L o e -
\‘,"-\\.'. T O O B A A M AR A A SANE N i

1 T 72
2 B 2.
T 2

. ¥1

9.2.3
9.2.3.1
2 Node 9.2.3.2 e v
9.2.4
9.3 S & 14

Appendix D. DARTS PL/I McCabe Modules e o o o o 6 6 8 o e s s s e o & 131

D.1 DESigN TLEES . & « o « « « = o o s o o o o o o« o o o o o« o« o« o« 131
.1l Node 2 e s o o o s & s o 4 4 4 s & s s 2 o s s s e e e a a 131
Node 2.10 e s e e v e s s ® 8 e s e e s e s s e a4 e o 133
Node 2.20 e o & e o s e s & 8 & s e s s e s s e o s e o a 133
Node 2.20.10 e o e o 3 o s ® & & & s o e o s e s 8 s s e o 134

= P

e .1.5 Node 2.20.10.10 e 1A s
s .1.6 Node 2.20.10.20 e & 1 N
vy NOdEe 2.20.10.40  « v o v v o v o = o o o v e e e e e e .. 135 ™
58 . '__'4'
- c1.9 NOA@ 2.20.30 + v v + 4 4 4 o v e e e e e e e e e e ... . 136 b3

O Node 2.20.30.10 & « o « « o s o » o o« s o o« o » + 2 « « « 136 o

e
.

1 Node 2.30 e & )

[cN-N-N-N-E-N-N-N-N-N-N-N.l
.

S S I S i O e ol o =
.

2
3
4
s
€
7
8 NodAe 2.20.20 . « ¢ 4 4 4+ 4 s s e s s s s e o e s s e s« 135
9
1
1
1
1

g c1.12 NOAE 2.80 = 4 4 e e e e e e e e e e e e e e e e .. 137
5% (1,13 NOAE 2.50  « « 4 4 e e e e e e e e e e e e e e e, 138
--:.h.

-l Appendix E. DARTS Data-Flow Tables for Experiment Controller Example . 139

List of References e o o e s o e s s s 8 s e s e s o s e s e s s e o s 145

Py

> Tl

ThilM'}
A
T
)
‘
1

Bibliography e * s 6 s o s o e s o s s 8 s s s e v s s s s e s e s e 149

" Arooemin n Tar
- ) R —
, X
. L
P U B
SR T
N .. Ca i
\:.'. —— e
- N
o By ___ . . _
Dictritoi-y
£ — R
oAy Availcoikilits Codes
o Avoil rndfor
T Dist Special
LNt
._'c-" "?."/', v .
o b
r 1ii ®
r o - . Contents ~ v
AN ¢ ) %)
i ~ X
‘.-. o N
o (AN
':.'. . b"‘.-‘*
'f,:.' NN
‘0 \‘
o XS

XX YL
N

V)
Loy

i

)
k'
XA




LIST O

F_ILLUSTRATIONS

[

¥

Figure

1.
2.
3.

5 —

.

P

PR L i
.
A

- 5.

7.

8.

g.
10.
11.
i2.
13.
14.
15.
16.
17.
18.
13.
20.
21.
22.

1@

LSS NAN

oAy
(LY

s,
1

oy
,

'.’}
r

l".‘
YN
v ¢

y

The Software Quality Framework P
DARTS Tree for Coordinator e o e s
DARTS Tree for Iterator e o o o
DARTS Tree for Selector e e e e e
DARTS Tree for Sequencer e e e e e

PL/I Code and Gordon's Metric Data -
PL/I Code and Gordon's Metric Data -
PL/I Code and Gordon's Metric Data -
PL/I Code and Gordon's Metric Data -

Experiment Controller System .« o o
Experiment Controller - Design 1 .
Experiment Controller - Design 2 .

« s s s e e s s s e ®

CACM 1l4a e e e e e
CACM 14Db e e e e
CACM 15a e e e e .
CACM 15D « e e e

e« » 8 @ s e o s a a =

English Language Problem Statement for
Ada Architectural Design Specification

Counting Leaves .
for Counting Leaves.

Ada Solution
Ada Detailed
CACM Example
CACM Example
CACM Example
CACM Example

Statement for Counting Leaves. « e e e e .
Design for Counting Leaves - COUNTER_PACKAGE.
1l4a, DARTS Representation e e e e e e e s .
14b, DARTS Representation e e e e e e e e
15a, DARTS Representation e s s e e e s o
15b, DARTS Representation e e s e o o 8 o

Design Tree for Halstead Metric. .
Design Tree for McCabe Metric. . .

e« ® e e e o e s s e e

List of Illustrations

o
F.

M

l.l'

,..;'I [}
s B
f.‘- .'u

. e
'
"

»
(g

v

4

s
. .
'I

Pl

n"'

i

-
L]

1 -
¥
»
L4
ol

”

' 1
7
l. l.‘

Lag
»

)
N

e




R A YA L LA SRR RS SO IO PR TR LA aia mal ao astd AMESNEIEAS g o T A ala e - -y vy
A R AT S AR A EA L CEA TSR 8 oM Y ey A EaN AL AE A I et 1 SR A S e g et fm v i B Ao g
. St

LIST OF TABLES

Table Page

1. Ssummary of Phases, Products, and Metrics e o o o o o o s o o e o « 15
2. Halstead's Software Science Metrics. c o e o s & s o e e e s e e o 20
3. MIL~STD-SDS Top Level Design Document Information in DARTS e e . . 24
4. MIL~STD-SDS Detailed Design Document Information in DARTS e o o « 25
5. Metric Applicability and Automatability e e e s e s s e s e s« « . 28

6. Automation Summary for McCall Metrics e o s o s s s e o o s 2« « 36
- 7. DARTS Software Science Operator Primitives. e e e e e e e e s . s L&
P 8. DARTS Halstead and McCabe Analysis - CACM l4a - ¥ |

9. DARTS Balstead and McCabe Analysis - CACM 14b e e o o o s o o o o« 49
10. DARTS Halstead and McCabe Analysis - CACM 15a 1 |

11. DARTS Halstead and McCabe Analysis - CACM 15b S X ) -
12. Requirements for the Experiment CONEroller . . « « « o « « o o« « & 23 > :
13. DARTS Metrics Summary - DeSigN 1 - v v v v v o o o« = = « = « o« . . 65 3
14. DARTS Metrics Summary - Design 2 T 1¢) "
15. MIL-STD SDS Top Level Design Document Information in Ada. e .« . . 69 :
16. MIL-STD SDS Detailed Design Document Information in Ada. e « « o« . 10

17. Operators and Operands in English Statement for Counting Leaves . 88

18. Halstead Metric Values for English Statement for Counting Leaves . 89
19. Halstead Metric Values for English Statement Adjusted for Redundancy 90
20. Operators and Operands in Architectural Design for Counting Leaves. 91
21. Halstead Mezric Values for Architectural Design for Counting Leaves 94
22. Operators and Operands in Detailed Design for Counting Leaves. . . 95
23. Halstead Metric Values for Detailed Design for Counting Leaves . 101
24. Length Estimates for Design One s e e s e s e e e s e e s .+« . 108
25. Length Estimates for Design Two v e e« o s s s e o s e e =+ o o 109
26. Data-Flow Table - Design 1 e X0
27. Data-Flow Table - Design 2 e s e s e e e s s e s e s e e e e .. 142

A Lt
. ‘l‘(‘..l

’
ISR IR R R

@
.

Il.'
e

.
9,

rerele

List of Tables vii

.

.'*JK‘”“ﬁtfﬂvh\Mx\\\ﬂhﬁn
ERY e - ASASCREN
ST AT AT \'\_\ A

AAIEGMNSN oS




. 1.0 INTRODUCTION -7

<

People concerned with the evaluation of software products are acutely
aware of the need for automated support tools and methods. If software quali-
ty could be objectively and automatically assessed early in the life-cycle,
provisions could be taken to assure that quality goals are being met. This
could ultimately reduce life-cycle costs and result in a more reliable and
maintainable product.

Pl

l'l

O
.

o
e

% *p

. L::. *
_of

-
7’

g
P ]

. ~

Prior work sponsored by the Rome Air Development Center (RADC), has devel-
oped the Software Quality Measurement Framework, a means to specify quality
goals and measure software quality. This effort enhances that framework by
identifying metrics that can be used on software designs, automating these
design metrics, and providing a methodology for using metrics, embedded in
) automated@ design tools, Auring the early phases of the software development
- life-cycle. An experimental design tool, Design Aids for Real-Time Systems
. (DARTS), is wused to illustrate the metrics and methodology. In addition,
design metrics in the Ada? context are also considered.

AR
e N

- 1.1 REPORT ORGANIZATION

3 This report is organized as follows. Section 1 provides background, defi-
( nitions, and an overview of the research program. Section 2 includes detailed
technical data and research results related to the identification and develop-
ment of automated design metrics. Section 3 describes a methodology developed
for using automated design-aid tools and metrics in support of an integrated
software development environment. Section 4 summarizes the conclusions of
this effort and Section 5 provides a list of recommendations for future
research.

P R S

e, 8 g

The appendices supply A) a list of acronyms, B) DARTS trees for the exam-
ple designs, C) DARTS design trees of the Halstead metric implementation, D)
design trees of the McCabe metric, and E) DARTS data-flow tables for the
Experiment Controller example. A 1list of references and a bibliography of
sources used are also included.

h
-

r ? Ada is a registered trademark of the U. S. Department of Defense (AJPO).

INTRODUCTION 1l

RN R ER TS O N RN L S, O




ARV
4
L '.'S"-"‘.,‘.."

LA

o
C e

I o
., '. 'l .l

.

PR ]
e
)

« @
)

" b
L]
."‘ O‘I.I'
,l“‘l “
LR S S N

By
'.A,'.n

e

.

B
e o e e e e
B R

o
.

b
Y
b
3
f .

1.2 RISTORICAL PERSPECTIVE

High quality software is of interest to both the software engineering com-
munity and its users. As evidenced by the Software Initiative [DoD82a],
recently renamed Software Technology for Adaptable and Reliable Systems
(STARS) [DoD 83], which by charter will develop tools and methods to increase
the quality of DoD software, software quality will no longer be tested-in, but
rather be required and designed-in. An 4important part of the Initiative is
the development of metrics to measure the quality of both the software devel-
opment procaess and software products. With some advantageous foresight into
this problem, the RADC has been sponsoring research in this technical area, in
particular the development of the Software Quality Framework [Mcc 77] which
identifies both user- and management-oriented techniques for quantifying soft-
ware product quality.

1.2.1 The Software Quality Framework

The initial Software Quality Framework effort, sponsored by RADC and Elec-
tronic Systems Division (ESD) under contract F30602-76~-C-0147, addressed two
major issues, software quality specification and measurement. This effort
identified 11 factors in a hierarchical framework for acquisition managers to
use to specify, predict, and control software quality. The following defi-
nitions are provided.

Software: the programs and documentation associated with and resulting
from the software development process.

Quality: a general term applicable to any trait or characteristic,
whether individual or generic; a distinguishing attribute which indicates
a degree of excellence or identifies the basic nature of something.
Factor: a condition or characteristic which actively contributes to the
quality of the software. The following rules apply to the set of soft-
ware quality factors:

A condition or characteristic which contributes to software quality.

A user-related characteristic.

B relative characteristic between software products.
Criteria: attributes of the software or software-production process by

which the factor can be judged and defined. The following rules apply to
the criteria:

2 Automating Software Design Metrics

:
- - - LY L]

ARSI ) A
P TS S ™ f‘:\" v

et (" e At et et e e e
IO S ARCS R A

A
AT PN,

l' " l." l'._l'. lr. ’.,

. -
[

..“."..‘. .“' .

1

T

"
.

e 'y ok, 0

b

a v g
.

*. ’ L
! AR A
v .
i@ b
" e o, e .

2

3

C AN

. .
"/'. "Q

2 A S



N N T T T T T T T R TR IR AL R AT ORI RN A AV AN S Wit vt 4t i AR AL A

Attributes of the software or software products of the development
process; i.e., Criteria are software-oriented while factors are
user-orientead.

May display a hierarchical relationship with subcriteria.

May affect more than one factor.

Shrhh _‘l’"n

L]

Metrics: quantitative measures of the software attributes related to the
quality factors. The measures may be objective or subjective.

The relationship of factors, criteria, and metrics 4is illustrated in
Figure 1. McCall's framework identifies 11 prime factors (correctness, effi-
ciency, integrity, usability, testability, flexibility, reusability, maintain-
ability, reliability, portability, and interoperability) which correspond to
user-oriented attributes. Corresponding criteria were established as soft-
ware-product-oriented attributes. The criteria have a fourfold purpose:

l. To refine the factor.
2. To help describe relationships between factors.
3. To establish a one-to-one relationship between criteria and metrics.

4. To create a natural hierarchy in the framework for factors in software
quality.

In 1978, RADC and the U.S. Army Computer Systems Command continued this
work with a Metrics Enhancement Study under centract number F30602-78-C-0216.
The results of the study, reported in [McC 79], refined the results of the
initial study and produced a measurement manual for acquisition managers
describing how to apply the framework in the acquisition process.

In 1979, another contract, number F30602-79-C-0267, was awarded to develop
an Automated Measurement Tool (AMT). The AMT, delivered to the Air Force in
September of 1981, automates the collection of specific metric data from pro-
grams written in COBOL, and provides a quality metric assessment.

In 1980, RADC sponsored additional refinements to the framework under con-
tract F30602-80-C-0265 to formulate and validate metrics for interoperability
and reusability. This effort resulted in a slightly rearranged framework [Boe
83b] and a new measurement manual [Boe 83a] for acquisition managers.

In 1982, RADC sponsored this effort, under contract F30602-82-C-0130, to
improve the framework by identifying metrics useful in the early phases of the
software development life-cycle. This was motivated by evidence that it is
easier and more cost-efficient to correct software at the requirements and

INTRODUCTION 3

L

AADONIT Tl

e

“

1)
b

‘@

~

AR,
h e

¢
et

2 .
!

’
. " .

«r o
O]

AR
[l
@V,

e
»

‘: ‘: ': ‘: "- .
P AAS .
)

I T B
) 4o
e’

e @ e

W
rPLL LS

>

s s
]

. v 3 8 5 % e
PN PP
r a

.
o
o

NAXANANN

’. I / “ " " "
Pidr] o'
'ty



J.'

o FACTOR MANAGEMENT-ORIENTED
- VIEW OF PRODUCT

' QUALITY

g

':':'\

5

e

=

Y SOFTWARE-ORIENTED

" CRITERION CRITERION CRITERION ATTRIBUTES WHICH
L PROVIDE QUALITY
b

o QUANTITATIVE

METRIC METRIC METRIC MEASURES OF

N

THOSE ATTRIBUTES

®
by REA
13 Figure 1. The Software Quality Framework
‘.\"l Vs
VoY SN
o Sevn
. design phases. Where most of the metrics previously developed were oriented t._-
( . toward manual collection of data from software code, this approach emphasizes

automated software design tools for data collection from encoded software *’
design media. o~
I R
- - &,
Design tools for the DoD will in the future be increasingly focused on the ,-:-'_;‘_‘u
= Ada language and Ada Programming Support Environments (APSEs). Some Ada-spe- 2 - a7
) cific design tools already exist, such as PDL/Ada [Weg 82] and Byron [Gor 83]. T )
Other design-aid tools will become available as part of the DoD STARS program. -
J\ Part of this effort has investigated the evaluation of Ada designs with a :-_.::.u
- design metric. AN
o N
® 1.2.2 Metrics of Software Quality K.
- )
::: The collection of metric data during software design can provide early :-:_{-Z:::
2'_. visibility of the quality of tne developing software product, and better esti- :::.{;
:: mates of its size and complexity. }.t‘::.
.\A' C\.‘J‘Lﬂ
L ] Software quality 4is that collection of traits or characteristics which
“ imply a degree of excellence or goodness of a software product. This research
2 4 Automating Software Design Metrics

o

A

e

Y

Q

.f‘.

A e L N G T N

et ¢ " L G " , .-.\.\.,-\‘,_\_.' .'\ Y



- ;, A SR SN AR S E TR PR SR AL .:(:.‘\".‘.v-"'_ _i."l_‘_i_‘"bf_\‘-_\-h;A‘:g MR RO e piucp R SR ACNS S a2 AP A bl A mal e

= .

[
A
()
.
o 0.

!

1

L

y
) -‘1
1

3

DY
vt
(1
L}
.

(VR WL S

% 2

.~
A )

.
LIAUCIL A

builds on the contributions of many other software engineering efforts, most
notably [Mcc 77] and [Boe 83b)], which have defined and refined a framework for
quantifying software quality.

According to the groundrules set in the framework, software quality is
measured by the absence, presence, or degree of sume identifiable software
product attribute. A premise upon which this research is based requires soft-
ware designs to be viewed as viable and measurable software products, and the
criteria, which can be captured from software design media, must be defined.
Design metrics should not be dependent on the design medium used but the medi-
um must have the necessary information content. The information necessary for
each depends on the metric chosen. The capture of this information can be
automated through the use of design-aid tools. Automation improves both the
efficiency of the process and the consistency of the data gathered.

Automated design evaluation would be useful to designers, program manag-
ers, and program office personnel alike. Designers would be able to quickly
compare competing designs and objectively choose the best one. Managers could
more easily track the software's development and estimate more accurately its
eventual size and completion date. Similarly, program office personnel would
have more visibility into the status and quality of the product for which they
are responsible.

A more detailed description of the tools and techniques necessary to use
design metrics effectively is included as Section 3 of this report.

1l.2.3 Automated Software Design Tools

Software at the design phase exists in various product forms, most common-
ly as flowcharts, program design languages [cai 75], or other design media
(e.g., [csDL80) and [Tei 77)). This product is an abstraction of the eventual
code, and as such, can be evaluated as a predictor of the quality of the soft-
ware code end-product. Early indicators of quality are desirable and have the
potential to increase reliability and decrease costs. In a subsequent sec-
tion, this topic is considered with respect to automated design media which,
in the authors' opinion, have many advantages over classical design media
(e.g., flowcharts).

’

[RCRLRIREAEAN S

W)
L.

l1.2.3.1 Software Design Media

)

A software design medium is any form of notation (textual or graphical)
. for representing and communicating software designs. Design media aid soft-
ware development personnel by assisting with the following functions [szu 80].

q’.
i
%
“

1. Representation of the system and software architecture at various stag-
es of development.

INTRODUCTION 5

A
'
Y
Y
|J:'b'
|_.\'
" o
n:.\.
b 2N
)
s
« .
-“-.' Y L R I P B R T T S S T U
o T Nt I S L e
o e e AN A L R AN A TR T T
WSEHL A YRYEYLY .}f\f\f'.'_\'.\':\f\‘:\.‘:\ RPN



-

@
v
"
-.
-
»
"
)
0.

LA A A

2. Enforcement of the use of design standards.

3. Implementation planning.

4. Performance and quality assessment.

5. Management visibility and control during implementation.

Most currently available design media are deficient in one or more of the
above areas and few are automated. 1In the following sections a brief survey
of current automated design media is included. This survey is not complete,
but does illustrate the available automated design media technology.

l.2.3.2 Automated Program Design Languages

vVarious automated program design languages (PDLs) are available. These
structured English processors produce various output to replace traditional
flowcharts. These media are easier to read and modify, and can be easily
adjusted for any desired level of detail. Some current examples follow.

The Caine, Farber and Gordon PDL [Cai 77] is a tool to aid in designing
and documenting a program or system of programs. A design in PDL is written
in structured English then submitted to the PDL processor with control infor-
mation to form procedures. The output is a working design document consisting
of a detailed table of contents, a listing of formatted procedures, a call
tree, and a cross reference of the procedure calls. This tool evolved from
Caine and Gordon's earlier work [Cai 75].

PDL/Ada [Weg 82] was developed for use with the Ada language. It uses a
proper subset of the Ada language.

Byron [Gor 83] was developed by Intermetrics specifically for use with the
Ada language, although its author claims that its use is not restricted to
Ada. Byron is based on Ada such that any 1legitimate Ada program is also a
legitimate Byron specification. It differs from Ada in two respects. Byron
allows additional information about a declaration to be associated with it.
Second, Byron tools can produce useful output from incomplete specifications.
These advantages over pure Ada are discussed in more detail in Section 2.5.

1.2.3.3 Automated Requirements and Design Languages

The Problem Statement Language/ Problem Statement Analyzer (PSL/PSA) [Tei
77], was developed to improve the process of preparing and analyzing software
specifications. This automated tool provides a medium which uses objects,
relationships between objects, and properties of objects to specify soft-
ware/system processes. PSA checks consistency of the database and provides a
variety of reports.

6 Automating Software Design Metrics

R A A ORUACACH
. ARSI

T AR (s

ABHYYR Yy

o, ;

P A4
)
;ﬁ

Pl ]

%
)I"n‘-'(’\J

’ §

PN

"
L)
)
» Ty
[
a

) 'll ,
Rls

/
8




U )
A
.‘ " .' “a .D .u'
1 " L 3 "

.
Y

o

d

+

»
&

L
O

b 48,2
L AP

£ 4 A2 A € A

ooy
e P

1.2.3.4 Design Aids for Real-Time Systems (DARTS)

Design Aids for Real-Time Systems (DARTS) [Fur 81] [csDL82] is a tool
developed at The Charles Stark Draper Laboratory, Inc. (CSDL) that assists in
defining embedded computer systems through tree-structured graphics, documen-
tation support, and various analysis features. These analysis features pro-
vide both static and dynamic software design feedback which can potentially
aid in the production of efficient, reliable, and maintainable software sys-
tems.

DARTS uses a mix of hierarchy, control and communications primitives, and
data structures to represent real-time systems. Requirements are expressed as
a functional hierarchy and designs as a tree-structured hierarchy of communi-
cating processes.

Although developed to represent real-time interactions, DARTS can be used
for both real-time and non-real-time systems. Through a friendly, menu-or-
iented interface, a user can build an encoded representation of a system; per-
form data-flow checking; generate simulations of the design to estimate
response time, throughput, and utilization; create a variety of data tables
and graphical tree-structured output in a variety of siZes; and, most recent-
ly, request an automated quality assessment of a software design.

DARTS has been used throughout this research project as a documentation
aid and development test-bed for the software design quality metrics described
in the next section. Throughout this report, DARTS trees and tables appear as
illustrations.

1.3 PROJECT OVERVIEW

This research project is part of RADC's Software Quality Measurement Pro-
gram. It has demonstrated that automatic and objective measures of software
design quality can be captured from encoded software design media. In addi-
tion, a methodology has been provided, useful for designers and program office
personnel alike, for incorporating automatic design quality assessment tools
into the acquisition and development of future software products.

Various metrics have shown utility as indicators of design gquality, but
few have Dbeen automated and integrated into a design-aid tool. Two metrics
were chosen for implementation and integration into an available design-aid
tool. These metrics, though added to the DARTS analysis capability, are not
constrained to this particular tool. To demonstrate this, one metric is shown
to be applicable to Ada designs.

INTRODUCTION 7

O

o " a®

M L T ~.~.\
IS L WASE R LAY
% MAA.‘I. 'a '..L{h‘. u l..\

DRCTICIL S AR
-

[ A

~_'.-_'--' .t \'-n.* AT T AT AT AT AT AT AR (1
e A TR N’\*}’?“:’?‘

BN A ST LR ITL P RS
DAY CORLEN UG

P

3

- ", "I '.v

A4

)

’f’f /.'

)ty

b
XA



."
L
oy 1.3.1 Regearch Objectives
:{}I The objectives of this research program were to
E ; 1. develop and validate software design quality metrics, and
‘.'_\:,
b}?j 2. develop a methodology, consistent with the RADC Software Quality Frame-
T work, for
E;S' a. evaluating competitive software designs,
-&f{ b. estimating software project planning parameters,
\'.-‘f
o C. monitoring software product quality.
QQ}
&_:_ 1.3.2 Technical Approach
:{b To accomplish these objectives, the tasks listed in the following section
‘3;5 were defined. These tasks are described as stated in the contractual state-
2508 ment of work, and a summary statement for each task follows the description.
° Detailed technical data corresponding to these tasks are referenced and follow P
> in the remainder of this report. N
o 0%
}}:j L] Task 4.1.1 Develop Design Phase Software Quality Metrics ::::
e
:}E In this task, design phase-oriented metrics shall be developed and ;i:
{ demonstrated to enhance the Software Quality Framework. These metrics -“‘.’
e shall include, but not be limited to, software science metrics. e
T
e In this task, a survey of the literature was performed, the detailed ;Cj-
~o results of which are described in Section 2.2. The sources are :::a
o included in the bibliography. Design oriented metrics were examined .j\j
) and shown to be compatible with the RADC Software Quality Framework. tii
j\;- The Framework was also reexamined in the light of dividing the total e
) design effort into architectural and detailed design phases. These ;;{
£ results are documented in Table 5. NN
Y Y
:*; L Task 4.1.2 Automate Design Quality Metrics N
" [
L )
g In this task, design quality metrics which are suitable for auto- NS
: mation shall be identified. 1In addition, at least two metrics shall be A
automated using the DARTS tool. Those metrics not suitable for auto- . ::{-
' mation shall also be identified and manual procedures for collecting :}:’
A the data shall be documented. Yy

1@

P S
R "_..' -\...‘
A ‘n“'. R - \.
3 R
(-0 ] Automating Software Design Metrics S:
2N 2
= Q
-~ MRS
Y ~h
- SN,
% ICHAN
A :\.*'\
LAt Y
R I
> LA
N af Caea)
N, S
T

v’

[

s



f_&"_"<'-'. _'s._\ " A ._v-'_'-v.“ P BRI b Jt g DA I TR RNV P AP St A /A A PR S i i 0 h T Bt Dt A B o -

In this task, metrics suitable for automation were identified and those
that were not were listed. These results are summarized in Table 5 and
Table 6. Two metrics were chosen as candidates for automation using
DARTS. The Halstead metric technique was implemented after require-
ments and design details were resolved. The McCabe metric was also
implemented. Implementation independent details are included in Sec-
tion 2.2. Requirements and Design information for the DARTS implemen-
tation of both metrics is included in Section 2.3.

L Task 4.1.2.1 Apply Metrics To Software Designs

In this task, the metrics shall be applied to a set of designs for
which actual code exists.

The literature search turned up many examples of code to use for this
validation stage. In some instances, code representing both good and
bad coding form was available for functionally equivalent units. These
units were translated into a DARTS design and then evaluated by both
the Halstead and McCabe metrics. The DARTS trees for these designs
appear in Appendix B and the metric analysis is discussed in Section
2.4.

In order to extend this technique to other design media, the Hal-
stead metrics were applied to Ada designs. The results of this task
are presented in Section 2.5.

« v TrVr

R N
'

L Task 4.1.2.2 Verify Metrics

M e B

In this task, the utility of the metrics as estimators of quality
and size (where appropriate) shall be verified.

o

A} e .
® -
. .. N .

Empirical data has Dbeen generated for a small sample of problems.
These results are compared with subjective assessments, and previously
published data. The results of this task are summarized in Section

2.4. e
.va

e Task 4.1.2.3 Calibrate New DARTS Metrics s:::
‘.f_‘..-\

o

In this task, the metrics under development shall be calibrated, if v_::

". '-D-

necessary, to improve the measurement technique.

A simple calibration was performed on the Halstead metric. Using the

results of Task 4.1.2.1, the design was modified to generate results :f
consistent with those found in the literature. No calibration of the :}
McCabe metric was performed. e

N

INTRODUCTION 9

e ¢ 2 g
e
Y

.

L

RN

R .I'.‘I.‘..

. S . R . .
e A e e e R T S
SRR ) . '

e "N.' __..'_ &

-
. "5

- bt te e T m e
n..'ri'!‘n"--"‘..\; . ‘:n.'_l. *

b
g

]

A
]

»

l‘

.
o’
')



AN S T TV LV V. R AR A A L AT AW S VNN N SRR VR N NSRRIV VOV RNV NS

>
..
--
- -
“
-

e Task 4.1.4 Develop a Methodology for Using Design Metrics ;:(
,

In this task, a methodology shall be developed to address the fol-
lowing issues.

o
’

o
o

A 4
\]

.

*

o

l. evaluate competing designs

7w
[ALAEN

Lo
'y

LA
2,

2. estimate various project planning parameters

.
'

3. monitor the quality of a software project

Sy

This methodology shall be consistent with the objectives of the Soft-

e _on 2 an oo el
- L )
- l"" l.

A AL

ware Quality Framework. 1
The results of this task are the topic of Section 3. 1In that section, [ )
a method is described for using Halstead's metrics in the early design RN
phase to estimate the size of an implementation and hence the project \ﬁ_
cost and schedule. fo". 4
i‘.:'!
AT
IR
o
o
..:_:. ".}".'
= -
o2
<o e
AN -:' "
J .-.
ASY 'S
-. ’ -
"-.'l “u
:-..\ A
S ‘._:. A
" e
) "5\
) LYY
S5 =
34 NG
-~._: ::\':'.
::\ ©oee
R o3
N o
®
AN s
‘:...: :_;.:\:-
e Set
RS RN
R 10 Automating Software Design Metrics \:,
0. )
.-
o

@,

’




:_\:v\'\*. DR N S DA SR ALALLEAERER S LS N AR A LA AR AR ARG M SO MMM AT A SO il e DAL AL S it )

2.0 ON THE DEVELOPMENT, USE, AND AUTOMATION OF DESIGN METRICS

Software metrics can be useful within the context of an integrated soft-
ware engineering environment. The purpose of this section is to describe the
characteristics of such an environment.

- 2.1 A CONTEXT FOR METRICS IN THE DEVELOPMENT PROCESS

The software development process consists of personnel engaged in software
engineering for the production of software products. Boehm [Boe 81, pp.16]
defines software engineering as

”"... the application of science and mathematics by which the capabilities of
computer equipment are made useful to man via computer programs, procedures,
and associated documentation."

This definition implies skill, innovation, and intuition on the part of the
software engineer, as well as the support +tools that the engineer uses. Mod-
ern programming methods 1like top-down, stepwise decomposition, information
hiding, and modular programming have improved programming style and automated
tools have lessened the burden of documentation, program generation, config=-
uration management, and analysis. Yet even today, few tool packages exist
that are integrated into a portable product which is useful throughout the
development process.

The term "integrated" is stressed to distinguish it from "bundled". Soft-

NS

ware tools have traditionally evolved from the bundling concept. That is, N

tools that function well individually have been used together with other simi- YA

lar tools. Data interfaces between tools, when they exist, are set up to pro- e
) vide a continuum of data flow and information from one tool to the next. ~_;v._—.
e Often, error-prone human users are these interfaces, and the success of this AL
T translation is dependent on the skill of the user. Information can be lost, “ 5
= errors introduced, and product quality suffers. Manpower used in this opera- ;::i

o

.
»

tion is often wasted. By providing integrated tools, which by design directly
interface to each other, the chances for a better quality product are
increased and manpower is reduced. Providing such a toolset is one goal of
the STARS program. This research supports that goal.

'y

The basic elements of an integrated software engineering environment are
skilled personnel, tools, and management and business practices which contrib-
~ ute to the development and maintenance of software products. This environment

’ provides the context for all of the activities associated with software prod-

HE P N
AR )

NG
s sl

'\ IR

On The Development, Use, and Automation of Design Metrics 11

et )
.'or
< [ T RV I

Lal
by

X
Ay

RS L TV T e T % ) - P T - e
N T R L i T
NS NS b R .

. R A
vt s S St e S s
DGUARG L% R0 0N, S LGOS Ch O G



I uct development during its life-cycle. The life-cycle of a software product
N begins at the conception of a required capability and ends with the software's
e eventual retirement from use, In many DoD applications this 1life-cycle is
easily fifteen to twenty years long.

L

:fj: In the sections to follow, a software life-cycle model is described which

}}: depends on automated support tools, including software metrics. This model is

o presented here to define a frame of reference for the succeeding discussion.

.3f 2.1.1 A Software Development Process Model

.:_.

o Although this research emphasizes the design phase of a software product,

- } p

o it is important to characterize the total picture to see where it fits in. In

8 this section, a software development process model is described. This model .

takes into account both the software products (i.e., documentation, code, sup-
> port tools, etc.) and the management activities (i.e., planning, organizing,
staffing, controlling, and assessing). Coordination of engineering and man-
agement talent creates quality software. Integrated software tools support
both of these disciplines over the life-cycle of the product. The scope of oo
this research extends to both of these domains. Quality metrics can provide e

7’

AT
St

Pt it et )
D M
Y

]

e

N
s s
1]

l

6* an assessment of the quality of the software product, and indirectly, the e
e quality of the process. These issues Will be discussed further in succeeding
AN sections.
T e
"ot 2.1.2 The Software Development Life Cycle S
e The software development life-cycle can be simply divided into 6 phases. :.,
j}j L Software Requirements Specification f’
ot o
o e Architectural Design (Top Level or Preliminary) o
) S
- e Detailed Design o
'::: e Code and Unit Test N
L,
{~ AT,
.._ RS

[
r
g
’
[
.

L4 Integration and Acceptance Test S

@1
@

el ¢ Operations and Maintenance
“
'E} It is often difficult to determine where one phase begins or ends so the
SN
%}u following guidelines are offered to precisely define the start and end points
o of each phase, the corresponding software products, and management activities.
! This model is generally applicable to medium (i.e., 1 to 4 man-years) or large
ﬁ: scale (i.e., greater than 4 man-years) development efforts.
T
>
5{ 12 Automating Software Design Metrics
e
Q.
-~
-':'.. . LI
g P
o E&.“r
. ~
-.' '
G ’:5
'Y !
.

I‘..




DONRGRPR  MER RN S Mt R AR DACKH D DA A S AN SUMES S A4 A A LA AU A AN A AL A A A I I g A g
3
QAN

J‘:

o
=

Y
I 1. Start Requirements Specification Phase

LN

t This phase assumes that a prior system specification activity has
-~ occurred to determine an appropriate division of basic requirements
:}: made between hardware and software. This requires a definition of the
‘\i\ system architecture, man-machine interface, and quality goals, and a
*f: plan of basic milestones, activities, and schedules. The input to this

~§ﬁ first software development phase is generally a verbal statement of the

user's software needs. This activity should clearly define what the

..j?' software is to accomplish.

s

:E: L Activities - Planning, requirements formalization and consistency

e checking.

\x
k ] Outputs - Preliminary plans, requirements document.

.yﬁ 2. End Requirements Phase, Begin Architectural Design Phase N
S ;i
}:3 This endpoint is often reached by a formal requirements review and 'j_.
N acceptance activity. The Architectural Design Phase, often refered to e
L as Top Level or Preliminary, should produce a functional architecture -~ .
- which is sufficiently detailed in function, performance and interface LA
;; definitions, to allow both users and designers to be confident that ;ilf
-,h requirements can be met and the design implemented. Development data, {ﬁb‘
.iu sufficient for product and process metrices, may be collected on avail- o

able documentation. Support tools, necessary for the effort, should be o
acquired or developed.

o
L)
i
f

user's manual, product measures, and process measures. ;' -

~ .
Can] ™
-~ i a s ; . . T
. L Activities - Architectural design, planning. EAON
as AN
< » :'.
;u ® Outputs - Detailed development plans, architectural design docu- g;{
- ment. e
2 )
¥ 3. End Architectural Design Phase, Begin Detailed Design Phase ?f:.
b . \. \‘
Y * “.
,iﬁ This endpoint is often reached by a Preliminary Design Review 3;:;
ol activity. It may be formal or informal. RINA
;.' L] Activities - Software component architecture definition, module @
s design, data base design. NN
T A
S QX
- ] Outputs - Detailed design specifications for each module, data base :’:{
o specifications, preliminary test and integration plans, draft Ay
o ®

U
')

4. End Detailed Design Phase, Start Code/Unit Test Phase

.

LI Y
s

-_:’. :-'- .

. V.
'\.A ,--...- .,
l-:l .h\.:
2y On The Development, Use, and Automation of Design Metrics 13 RN
WA

.:,.

.:‘

“a

[

%, - ™
WAL SAE NP SRR AR AL S N P N R N I SR S T S R et TNt AR TN N w o . . . - - - -

o AT : .,:.',3. A ":"b"-:}t"-:":'t"::"::\."-\.": ,,.:-,\ S NN : Sl AN RO o

. ~ G RGOt USRS R, -
- g Lot 0l b 4 v .




AP SRR A S WAtk b A AC - BRI R A YR R e A b el Ra*2 A WA AL G L Bk G- G a¥A Ao S ANK AL AL S i Ml s it it S D O RN B R |
R Al A RS A AN A R AR,

This endpoint is reached by a Critical Design Review activity. The
review, or walkthrough, can be done at the module or program level.

L] Activities - Develop code and test each module according to stand-
ards set in development plan. Verify completeness and provide
requirements traceability. Configuration manage modules. Complete
test, acceptance and integration pléns, and user's manual.

° Outputs - Verified and tested modules, approved acceptance plan,
product measures, and process measures.

5. End Code/Unit Test Phase, Start Integration and Acceptance Test Phase

This phase ends when all modules have satisfied the unit test
requirements.

(W A A

. Activities - integration of modules into progranms, hard-
ware/software integration and system test. Update detailed design
documents to reflect the as-coded version. Provide problem report-
ing and resolution.

I‘ l'l
)
hl

v e e e
»
L

,.
(L )

{¢k1f;}

v

L Outputs - Problem reports, configuration status reports, as-coded
design document, test results for archive, performance data, prod-
uct measures, and process measures.

6. End Integration and Acceptance Test Phase, Start Operations and Mainte-
nance Phase .

This endpoint is reached by completion of the Acceptance Test
activity. The product is delivered to the user and installed. The
product may include: documentation, reports, development standards,
support tools used to develop the software, development data, test
results and procedures as well as the code. Training may be provided
as well as any warranty service.

® Activities - Installation, support, training.

® Outputs - All deliverables.

2.1.3 Using Metrics During Software Development

The Software Quality Framework has provided a language and structure for
identifying software quality goals as well as providing some metrics of soft-
ware product and process criteria. The previous section established start and
endpoints for phases within the software process life-cycle and listed various
products, development data, and process attributes which can potentially be

A A

P
PR L
RSP

)

14 Automating Software Design Metrics

L]
o
’

.

~

RAUCRICICRILY -.‘_'-'_\‘_-.'_\'_\'_'.'_\.""."

. RICGA AL N AR S Sl S o
R A A
e A A W e e e o e



evaluated by some nmeasurement tool based on the ideas stated in the Software
Quality Framework. A subset of the phases, products, and applicable metrics
is summarized in Table 1.

Table 1. Summary of Phases, Products, and Metrics

Life reguirements architectural detailed code and
Cycle design design unit test
Activity
Products reguirements architectural detailed code
document design design
document document
Metrics McCabe McCabe McCabe
Halstead Halstead Halstead Halstead
# pages # lines # lines # lines
HcCgll McCall McCall

2.2 SELECTING METRICS FOR AUTOMATIC MEASUREMENT DURING DESIGN

As part of Task 4.1.1, Develop Design Phase Software Quality Metrics, a
survey of the current literature on software metrics was conducted. The goal
of the search was to identify metrics which are valuable predictors of soft-
ware quality and other software development parameters, and can be applied
during the design phases. The results of the survey are presented in Section
2.2.1, and the definitions of the identified metrics are presented in Sections
2.2.2 and 2.2.3.

Of the metrics identified during the survey, those which were compatible
with the Software Quality Framework were evaluated along with the Framework
metrics for application during the design phases and automated data col-
lection. Section 2.2.4 discusses the criteria that make a metric suitable for
use during the design phases, and the conditions under which it may be meas-
ured by a design tool. The detailed assessment of the McCall, McCabe, and
Halstead metrics follows in Section 2.2.5.

On The Development, Use, and Automation of Design Metrics 15

O LR I AN AR U N N A MDA G A DA SO MR SR SN ME I A A A At et it ey
. - R . . - . . e " . Y Y. . - LR

.;.";‘;_.
Y
Y

St

o
At

o

’

o
-

P
.,

i e BB s

-3

WAL LAY
h [y

3

1

I




T Se , TT_ * - -__"‘-:‘E-.‘i'_‘b ~‘V_V;"..‘-.*i<." .‘7. -:‘__ " |4“'_.T-‘_ - ‘1,:"_' -‘_'f-t'vl.ﬂ ‘ﬁ..ji .'v..‘T-_"‘“L" ':"‘;."_7‘.-—'3 hATA A AT AR AA T S

®

.
-~

o
. _‘;;;j
]

2.2.1 A Survey of Recent Metrics Literature )

ography. They show that much of the work going on with software metrics today ;}-;7
is in measuring existing code with the Halstead or McCabe metrics and using @
the values to predict quality parameters such as the number of errors. The N
predictions are then tested against actual error data, and the measurement
techniques are refined. The results indicate that the various Halstead met-
rics and the McCabe cyclomatic complexity metric are useful over different
types of applications and implementation 1languages. These are, then, prime
candidates for use during the design phases.

EERSR
The sources for the metrics literature survey are included in the Bibli- 5_-j}

The McCabe and Halstead metrics basically measure different aspects of the
complexity of software: its structure and language use. In the Software Qual-
ity Framework developed by McCall et al., the quality criterion simplicity
(the inverse of complexity) contributes to many of the quality factors,
including testability, reliability and maintainability. As such, it is a val-
uable indicator of quality during the design phases. The Software Quality
Framework, though, covers other quality factors and provides metrics to meas-
ure the criteria that affect them. To make sure that as many quality factors
as possible were covered during the design phases, each McCall metric was con-,
sidered in detail along with the McCal< and Halstead metrics to see which com-
ponents might be measured during the design phases, and which might be
automated.

2.2.2 McCabe's Cyclomatic Complexity Metric

McCabe's cyclomatic complexity metric is based on the desire to limit the
size of modules in a software system sO that they are easy to test and main-
tain. He proposed that the number of paths through a module is a better meas-
ure of testability and maintainability than just the number of
instructions/statements in a module: A strictly sequential module, with just
one path, may be easier to test and maintain than one with a more complicated
control structure, even though the sequential module is longer. More paths
through a module require more tests, and McCabe inferred that more paths will
make it harder to locate and fix errors in the module or modify it.

The metric is based on the complexity of the control structure of a module
and of the system of modules, soO it is applicable during the design phase as
soon as that structure begins to evolve.
2.2.2.1 Cyclomatic Complexity Metric Definition

The definition of the metric is based on the following graph theory.

16 Automating Software Design Metrics

e

SN VTN
AMCVACS W, SRS I I R SR



T T T T T T e T Y R L L Y L S L S N T N LS T TN e e e

A directed graph can be drawn to represent the control flow of any module.
It resembles a flowchart, but is constructed with more formal rules. Each
group of statements which is executed without a control transfer becomes a
node, and the control transfers become arcs 1linking the appropriate nodes.
Ideally, all possible paths through a module would be tested. In practice,
this is often prohibitively expensive or impossible. (If there is a backward
branch in a module, the number of potential paths is infinite). For a module
with a single entry point and a single exit point, a graph theory result
applies: a basis for the graph can be found, in terms of basic paths, which,
in linear combinations, generate all possible paths through the graph. McCabe
proposes that the number of paths in the basis is a reasonable measure of the
testability and maintainability of a module. It can be used to decide when to
break up a module, or to identify modules which will be more difficult to test
and maintain.

The number of basic paths in a graph, the cyclomatic complexity, is
defined in [McC 76] as

v=e-n+2p
where

n is the number of nodes in a directed graph of the program,

e is the number of edges (arcs) in the graph,

P is the number of connected subcomponents (modules) of the program,
and

v is the number of basic paths through the module.

If v is calculated for all the modules in a system, the value of the metric
for a system will be the sum of the values for the modules in the system.

R

The cyclomatic complexity can also be obtained from a visual inspection of
the program graph, when the grapn is planar and connected. 1In this case, the
cyclomatic complexity is equal to the number of regions into which the graph

s

| IR LAV I
Y-
v e

e

divides the plane. :{:
s

Finally, for structured programs, the cyclomatic complexity is equal to }:}:

the number of predicates (binary decisions) in the graph plus one. (Compound ;*i\.
conditions and multi-way branches are treated as if they were the equivalent YR

set of nested single-condition binary branches). A graph with no branch
points leaves the plane in one region. Each binary decision adds another
region to the graph.

McCabe recognized that more than one simple predicate could be included in
a single programming statement, such as an IF. Predicates beyond the first
clearly add complexity, but the graph would only show a single binary branch.
To account for the added complexity, he proposed counting the number of simple

On The Development, Use, and Automation of Design Metrics 17

red
N
-

O Y

P

: ..c '."'-I..' o)



-
S

-
..-
.
~ .
-
i)

[

..
«
[

« ° D
‘l l".l"l A

[

#

predicates, rather than the number of decision statements. This amounts to
modelling any compound condition as a set of nested IF statements.

Myers [Mye 77] proposed that the metric value should be an interval, rath-
er than a single number. The lower bound would be the number arrived at by
using the number of decision statements, and the upper bound would be the num-
ber arrived at by using the number of simple predicates. This method has the
satisfying effect of giving the metric values for simple examples the same
ordering as their subjective evaluations of complexity.

Neither McCabe's method nor Myers' method gives different weight to condi-
tions at different nesting levels.

2.2.3 Halstead's Software Science Metrics

Halstead's Software Science [Hal 77] is a theory which has been applied to
the complex problem of software project management. Halstead claimed that
algorithms expressed as computer programs or other written media could be ana-
lyzed in a consistent and simple manner to yield indicators or measures of
quality and other software development parameters. Researchers over the years
have used this theory in a variety of experiments which, in general, has shown
it to have some degree of utility. Most experiments to date have, however,
used this technique on software at the code stage of its development. This
task extends some previous work [Szu 80, Szu 81) which claimed that useful
software science measures could be derived from software design media by
embedding this metric technique in an automated design-aid tool.

2.2.3.1 Software Science Definitions .

The Halstead technique is based on the identification and enumeration of
four basic parameters that are directly available from the language used to
express the algorithm. Other parameters, which are derived from these, form
the set of software science metrics. All of the parameters are shown in
Table 2.

The four basic parameters are:

Ny number of distinct operators
N, number of distinct operands
N, total number of operators

N, total number of operands.

According to Halstead, algorithms consist of operators and operands, and
nothing else. The validity of this claim is apparent when programming lan-
guages are considered, but when other forms of algorithm representation are
used, ambiguities often arise. Languages which have structured or abstract
data types generally cause the most difficulty. It is up to the user of the

18 Automating Software Design Metrics

BRCECRLL KA SN S D0 MOF S S E A 0600 14 38 14 2500 DA S04 20 MMM 13 BT 10 SIS e a o Wil St e

a
" ]®

.
,
AR

« 'y

r



. w
R
D A I}

«

8 X
- ey
N Halstead technique to decide which elements of the vocabulary are operators ytfti
}: and operands according to the vague definitions provided. Operators are sym- i:;}g
= bols or combination of symbols which affect the value or ordering of operands. Sl
¢ Operands are variables or constants that the implementation employs.

= 2.2.3.2 A Generalized Halstead Technique j}?{%
Y A
N Wwhen considering adapting the Halstead technique to a particular design i;j}i
- medium, the following procedure is offered. e
'i 1. Identify operators and operands from the vocabulary of the language

= used in expressing the design. This step is often the most crucial and

- controversial part in the technique. Much prior work (e.g., [Els 78],

- [Fit 78), [Ham 82], [She 83]) has established evidence that it is Qif-

o~ ficult (and sometimes impossible) to determine whether a vocabulary

- element is to be classified an operator or operand. There is no con-

e sistent and non-ambiguous definition to use as a foundation. This has
}f caused substantially different results by different researchers. It is

- therefore important to be aware of these findings and be consistent
= within an experimental domain.

? 2. Count the number of occurrences of each operator and operand. Again,

- this step needs to be consistent. Halstead, for example, proposed that
- each "GO TO label" be counted as a unique operator for each unigue
label, yet he coansidered "IF statements" as n occurrences of one unique
. IF operator. ’

A 3. Calculate the metrics based on the formulas listed in Table 2. .

o In this report, consistent counting techniques are defined for the DARTS
. design medium (Section 2.3.2), and for Ada as a design medium (Section 2.5.4).
F. Other examples can be found in the literature. Most, however, consider only
‘ ' programming languages like Fortran, PL/I, and IBM assembly language.

b [ 3
NI AR AU PO LY

3
1@

On The Development, Use, and Automation of Design Metrics 19

PO R '.' '.' 'a‘ y N ‘.. '.. '.: "I ':’1'

RN

P

»

i
'IG.J‘I

o

(P IR L A

.

"
™
\-‘
%)
=
l"n'.-.'."'..h'.'.\.l. ~ - \' -
Y et e Cr R N N

L L)

.« L
e e A
SO WS WL LR

L A N A T O P A N 'S °,
RN R, . N A S TNING
\..' o« « - B ’ " ™~ l.':-" ‘..1 X .;-\. Tt s o N




i g Sl el At nex et g Lard e d
DAL S M SN G EN CAHEA T L EXEAEA CACHER LA CARLEAE ISR LA T A S 0a W AT AR AL AT bk o O g |

Table 2. Halstead's Software Science Metrics.

HALSTEAD METRIC SYMBOL FORMULA
DISTINCT OPERATORS o
DISTINCT OPERANDS ny
TOTAL OPERATORS N,
TOTAL OPERANDS N,
VOCABULARY n =g+
DESIGN LENGTH N = Ny +N,
ESTIMATED LENGTH N = ny logy 1y +15 109y 19 ..
PERCENT OFF
DESIGN VOLUME V = Nlogyn i
POTENTIAL VOLUME V* = n'logyn* i
DESIGN LEVEL L= VWV s
ESTIMATED DESIGN LEVEL € = 2ny/miN, :
INTELLIGENCE CONTENT | = v~ ve R
LANGUAGE LEVEL A= LV : 2
ESTIMATED LANGUAGE LEVEL X = T2y "‘QEI
EFFORT E= VL T
ESTIMATED EFFORT €= vi 2224
g
::::?"3.‘
2.2.3.3 Interpreting Software Science Metrics SjSE:
Software science metrics measure various complexity aSPECtS of software ::.:iﬂ‘
components. The following discussion provides an interpretation of some of o
the more usable metrics defined in Table 2. L ]

LI

The Length (N) is roughly equivalent to the conventional count of executa-
ble statements in a program. This is based on observed occurrences of opera-
tors and operands.

gl

Te®
]

»
..

(AN

@555

20 Automating Scoftware Design Metrics

B A Y
A

»
J“ 1‘ 1

v 4




R I B

Yy € ¥ b
N S

LT YT

AR A N B

1

B4l
-

L

ISR

g SRNCAAEAND ah 2 3 e

The Estimated Length (N) is a metric used to predict the ideal length of
an implementation based only on the number of unique operators and operands
available in the 1language used. This metric is often compared with the
observed length to determine whether impurities are present in the implementa-
tion. Impurities generally reflect poor programming practice and make the
implementation less concise than ideal.

The Volume (V) represents the number of bits necessary to encode the pro-
gram using one character per operator or operand.

The Potential Volume (V=) is the most compact form the program could take,
considering it as a built-in function with a list of input and output argu-
ments. This term is often based on opinion, rather than calculation.

The Level (L) is a ratio between the Potential Volume and the actual Vol-
ume. It 4is often regarded as an indicator of the 1level of abstraction of
implementation. Since the Potential Volume is an ambiguous quantity, the
Estimated Level (L) is often used, for it is dependent on readily observable
quantities.

The Intelligence Content (I) is an estimate of the Potential Volume. It
is independent of the language used and is expected to be invariant over dif-
ferent implementations of the program.

The Language Level (\) measures the expressive power of a particular lan-
guage. High 1level languages, that allow alternatives for expression, have
language levels greater than those of assembly language. Halstead measured a
variety of languages and computed the following: English prose = 2.16; PL/I =
1.53; FQRTRAH = 1.14; and Assembly = .88. The Language Level is often esti-
mated (A) to avoid using the questionable Potential Volume term.

The Effort measure (E) is used to predict total programming time when
divided by the Stroud Number (number of elementary mental discriminations per
second by a human). Halstead also provided a formula for estimating Effort
(%) which provides an alternative form. This alternative is discussed in more
detail in Section 3.1.1.

2.2.4 Distinguishing Metrics by Phase and Automation Potential

This section establishes the potential for automatically measuring the
McCall [McC 79], McCabe, and Halstead metrics in the early life-cycle phases,
using a design tool such as DARTS.

McCall broke down the software development process into requirements,

design, and implementation phases to indicate when the metrics could be
applied. Later versions of the Framework [Boe 83a] [Boe 83b] divided the

Oon The Development, Use, and Automation of Design Metrics 21




o design phase further, into the Top Level and Detailed design subphases, but
: did not reclassify the metrics. This life-cycle phasing is more appropriate
e for this discussion because the subphases mirror the breakdown into prelimi-

X nary and critical design reviews, and architectural and detailed design docu-
ments, as discussed in Section 2.1, providing measurable products and proc-
esses.

The criterion which determines whether a metric is applicable to a phase
or subphase is that the information required for its evaluation be present in
the software product for that phase or subphase.

For the requirements phase, the product is the Software Requirements Spec-
: ification; for the design subphases, the Software Architectural Design Docu-
1: ment and the Software Detailed Design Document. For the implementation phase,
) the product is the source code.

For the design phase, similar information is contained in the documents
for both subphases, but the level of detail differs. The Proposed Military
Standard on Defense System Software Development, (MIL-STD-SDS) [DoD 82], out-
lines the required documents. The information called for in the design docu-
ment descriptions includes requirements allocations, interrupts, timing and
sizing estimates and budgets, limitations and constraints, special require-
ments, interface definitions, database definitions, and control structure and

Ry

[
.'.?

e

.
,. L

v

-~
Ay flow. The architectural (Top Level) design document defines these items for

e the Computer Software Configuration Item (CSCI), shows the structure to the o
A Computer Software Component (CSC) level, and defines the required items for L
o each CsC. -

The detailed design- document evolves from the architectural design docu-

N, ment. When it is completed, it includes a full breakdown of each CSC into
N units and modules, to the level required for coding. All the control logic is
e shown, and the data structures are broken down to individual variables. The
3 items listed above are included for each module. (The detailed design sub-
phase could be divided in two to yield three subphases for the design phase.
The first part of detailed design would have a product in which the breakdown
into units and modules is shown, and the second would have a product in which

L)

LA N Y
Wt
a » 00

ORI LR
we

8
i\; the logic and data internal to each module is shown. The former would show
pﬁaj the control structure for the whole CSCI, while the latter would provide the
»}g{ code-to specification in a form easy to parcel out.)

o

= Whether or not a metric can be measured by a design representation tool

»

depends not only on the information needed to evaluate it being present, but
also on its being present in a form which can be recognized and manipulated by
a program. Generally, this involves providing a syntactically recognizable

LR R

'. .I. " 'l' “ ‘l

L

b:f: form for the information. For example, in DARTS, the input and output data
- items for a node are specified separately from the processing description, the
[

SENA

i'.‘-'.‘

*,3:: 22 Automating Software Design Metrics

[

AL

S
.
-
.
LYy

LI RN

LR «
AL YUV SRR L




L
14

| LR P S

"

[N

A
.

’
IRINARRRNE ~»
PR P

+

e e
PRt i
v
a s e

I~ SO
) A

0,
., l'.I.A.'I

.

» o1
e
.

‘.a‘.nk‘.' ( ~ ; ," ,{ ‘.‘A't’. '.'l'_. \

>
)

[ JE XS

' d

L] v % 3 4
e e b
CAr A

L] n.'n

ARy L

»
L

Y 4

.,
.
RAY B

LI
L

Dl iy

A

AL A R ie e A 2 e Aar A e A T YR e B S i
AR S R A I S e DAL I DR O A D A

inputs are distinguished from the outputs, and each item is distinct. This
structure makes its possible to answer questions like:

1. Are any data items specified for a particular node?

2. How many data items does the node have?

3. How many input items does the node have?

4. How many of the input items are also output items?
This does not, however, allow us to answer the question,

5. Are all input items used in the node?

since the answer depends on other information about data use being present in
the database and in a form that can be processed. As an alternative, it would
have been possible to have provided a field for data items where input and
output were not differentiated. The user might have included comments distin-
guishing input and output. The information content of the database would be
the same, but the capability for automatically answering the guestions would
not: Questions 1 and 2 could be answered, but not 3-5. Finally, it would
have been possible to have provided no separate data item field. The user
might then have included the data item information in a free form text field
associated with the node. Again, the information content would be the same,
but in this case none of the questions could be answered automatically.

Even when the necessary information is present, some metrics are inherent-
ly not measurable by a design representation tool, Dbecause they involve a
knowledge of the problem, and a human judgment about the sufficiency or com-
pleteness of the design. Most of the McCall metrics are really checklist
items, such as making sure that all device errors are handled ([Mcc 79]
ET.5(2)), or that the numerical methods used are sufficient (AC.1(4)). 2 tool
which has a design representation as its database cannot tell whether some-
thing has been left out of that representation, unless it can do so by check-
ing consistency with another source of information in the database. It could
contain a 1list of such items and let the user check them off. The metrics
could be derived from such a list.

In this project, DARTS is used as the tool context in which the metrics
are evaluated for potential of automatic measurement. The context for infor-
mation content is based on the design documents previously mentioned.
Although most of the information called for in the design documents can be
included in a DARTS database, much of it can be expressed only as comments in
the free-form text associated with a node. Shown in Table 3 and Table & is
how the information in each paragraph of the MIL-STD-SDS design documents can

On The Development, Use, and Automation of Design Metrics 23

- d N
L3 S

e T N
A AR S SRS LA S SRR SR Y “ Pa 0™
! oo 4 e )

-

8, A

N N N N N N A Y e

ﬁﬁgﬁ#
e T
LAY

‘.5,
.l {l “I (
Pl &

Elet

.“.
‘.I

-




LI 20 s0 SRautgl L RERE A NN
Co@e

L I N Sl R

[}

-“/-‘}-"J-‘

~e

g

AN

R oA aNe
ENYNY

e

*

LAl e Al

N
.

be represented in DARTS. The paragraph numbers are taken from the associated
Data Item Descriptions (DIDs) ([DoD 82] R-DID-110 and R-DID-111).

In addition to the presence or lack of information, the feasibility of
measuring a metric automatically depends on the practicality of performing the
necessary processing. This may range from trivial to beyond the scope of the
existing technology.

Table 3. MIL-STD-SDS Top Level Design Document Information in DARTS

Paragraph number Means of representation in DARTS
1.1 Text.
1.2 Text.
2.1 Text.
2.2 Text. 7
3 Text, requirements and architectural f{j
design trees. -
3.1 Architectural design tree, data set/use
table, module table.
3.1.1 Text or by modelling the data source
as a data producing process.
3.1.2 Text or by modelling the data source
as a data producing process.

Text.

.

3.2
3.3.1 Text or could be modelled.
3.3.2 Diagram, ECSL simulation output.
3.3.3 Diagram.
3.3.4 DUR statement in tab.
3.4 Same diagram as 3.3.
3.4.X Text.
3.4.X.1 Text.
3.4.X.2 Indata, Outdata; data set/use table.
3.4.%X.3 Text.
3.4.X.4 Text or by modelling a handler.
3.5.al11 There are no DARTS facilities naturally
suited for representating data structures.
3.6.al1l Text.
4, 5, 7-9 Intentionally left blank in DIDs.
6 Text.
10 Appendices - not applicable.
24 Automating Software Design Metrics




weln

PRt
[P

» )
¢ 8

o .

iy
O

4
s s 4

P
., 'v”"-ll*:;" ",
YA

- I

# Lad

.
.,

PR
s 'e te e

.
’
s

e
PR

.
e ¢
s

A

. 1 ]
P,

)
S

l.'.' [ 1]

L v S

WA
)

e,

i .

N
FRPTMI
. 5,08, 8, 4, 4,

“

MR POk \-—‘-'. ]
W ."',‘\..;U". /?‘-'_ ‘.‘ {- ". ,.2 . ‘A.

P .
TR R S W

R

B N SN MO SR AR A o NC AN A S Ja g

Table 4. MIL-STD-SDS Detailed Design Document Information in DARTS

Paragraph number

Means of representation in DARTS

3.1.1.3

.
.
.
.

.
O S S T T S o e N el e
.

R e ] & b WWwwwwwww

.
.
.
.

WWwwwwwwwwwuwwwwww
* @
NNNNNNNFERHRERERERRP
[}

w
.
W

4, 5, 7-9

o

10

a)
b)
c)
a)
e)
f)
g)
h)

Text.

Text.

Text.

Text.

Database printout.

Diagram, #variables.

Text; requirements, architectural design,
and detailed design trees.

Text. Timing through DUR statements
in tabs, output of ECSL simulation.
Diagram except data structures.
Data descriptions in text.

Text.

Data variables - partial.
Diagram, indata, outdata.
#variables, data set/use table.
INV

Diagram.

Diagram.

Data set/use table.

Text.

May be modellead.

Text.

DUR statements in tabs.

Text.

Text.

Diagram.

May be modelled, DUR statements
in tabs.

Text.

Intentionally left blank in DIDs.
Text.

Appendices - not applicable.

On The Development, Use, and Automation of Design Metrics

. J:.'\‘,-.:_'.'_\ 5

UL N T Lt
A AT

AT TN A AT A,
« e e e

\V--.'-
e

25

YA

|
Y

..
\ " A
a0l

Foat

DAY J
’
R
ela
(4
[’

L TSRS
Py

. ne
» ;n.

1
.

.I
%"
o

v
AS

..'.l .

et ‘L'
f}"l-"i

OO N 1
A'-"'l‘ s,
a0 8 el

N

'1""'1" [ SR
. _‘1; I
RANEL RIS

N

.
RS
RS
RS

“l £ 2




2.2.5 Evaluation of Candidate Metrics

Nt ‘ [ .'..‘ .

Table 5 summarizes the results of evaluating each of the metrics in [McC
79] Appendix B, the McCabe cyclomatic complexity metric [McC 76)], and the var-
ious Halstead metrics [Hal 77]. The metrics were assessed against the crite-
ria discussed above in deciding during which software development phase they
are applicable, and whether or not they may be measured by using the informa-
tion in a DARTS database.

K

e
s

-~

Nl
s s ¢« 3 ¥ 2

The table shows [McC 79])'s designation of applicability for the design
phase in the center column under design (labeled McC), between the desig-
. nations for the architectural (labeled AD), and detailed (labeled DD) design
- subphases. When the designation for any phase disagrees with [McC 79], it is
' appended with an "=".

t
L

= The criteria used to determine each metric's potential for automation,
§ noted in the AUTO column of the table, are relative to the current implementa-
- tion of DARTS. The following symbols are used to indicate the distinctions
discussed in the section "Distinguishing Metrics by Phase and Automation
Potential."

.
' v
0
LI ]
'

PR
e ata e
RN
P
A AT

.
&
R P |

LA 4

5’" 'l

YO - VUse of DARTS guarantees that this metric takes a particular
value. For example, the metric MO.2(l) asks how much of the design is
represented in a hierarchical structure. DARTS representations are
inherently hierarchical, so the metric always takes the value 1.

1. " I' l' l‘ h
PR 1S
v

Yl - The information needed is present in a form recognizable by a
program, so the metric is automatable.

P

S Nla - The information needed is not present, but might be added.

' .
l.l .
'
St

DI I

Nlb - The information needed is not present, and cannot be added.

Nl - The information needed is not present, and is not really
appropriate in a design representation tool.

-
a 1]
Y
5.

Y2 - The information needed is present, but not in a recognizable
form. DARTS could be changed to provide a syntactic form for the infor-
mation.

Bl
Bt N
ER R N R

N2 - The information needed is present, but not in a recognizable
form. DARTS cannot be changed to provide a syntactic form for the infor-
mation.

. ll
‘1 r

XXX

N3 - The information needed is present, but the metric is not ame-
nable to automatic calculation. It asks a question which requires under-
standing of the problem being expressed, for example, whether some of the

-

v

.‘ 1
@

26 Automating Software Design Metrics

»;
s
'-,':".

AAARS
oy
LY

‘.

r
N

Id




A 2PN SN ARl e b g o) a8 gL an)
. L L B e N .

processing expressed in the design is complete, sufficient, or correct:;
or whether a particular function is present in the design.

The practicality of providing the necessary processing is indicated in the
table in a gross fashion. An "s*" is appended to the automatability symbol if
the processing is likely to involve a substantial effort. "Note" follows the
table entry if a note is provided in the following section to comment on or
explain the entry.

2.2.5.1 Notes on Table 5

CP.1(1) This metric asks whether or not all references are unique, e.g., a g
function is not called by one name in one place and another somewhere else. e
This is really a completeness question. It is not determinable automatically, e
since the processing will assume that different names refer to different enti-

ties. However, the data set/use table and the module table present the infor- 4;"
mation needed in a tabular form so that the judgment may be more easily made. P
For example, a spelling error should be obvious. 3
.:;h
CP.1(5) This metric asks whether or not all conditions and processing are A
specified for each decision point. This could be enforced if DARTS were modi- ezi
fied to require that selector nodes have n+l offspring for n predicates, $5¢
instead of assuming a null n+lst offspring.
CP.1(8,9) These metrics check consistency between requirements and design, -
and design and code. [McC 79] gave this up as too difficult to measure.
CS.2(2) This metric is the proportion of modules which do not conform to
naming conventions. Naming conventions should be used from the beginning, in
requirements definition, to help traceability and prevent confusion. The
"Nla" index here is used to indicate that a particular convention could be
added; the "N3", that the metric relies on a human judgment.
CS.2(3) This metric calls for global data items to be defined in the same "
‘e manner in all modules, so it is another example of measuring conformity to a ;;.
Sy convention. Insofar as global items may be defined in DARTS, the checknodes -
g;} function detects anomalies. f:c
-:i\ CS.2(5) This metric measures data type consistency. A strongly typed &:ﬁ
s implementation language would enforce this. DAt
>, o
:f}. ET.1(1l) This metric asks whether or nct any concurrent processing is cen- Qﬁt
fn' trally controlled. Since DARTS provides a means for expressing processing 5:\
;;. concurrency and data exchange, any concurrent design expressed in it will Dbe :Qi\
:Cin consistent. The metric definition does not contain enough detail to know if .:}}
. this is what is meant, or if it is a checklist item. "
..:-":
:v? On The Development, Use, and Automation of Design Metrics oy
-\-.'
-
N .
-”..' .
AR .
LA .
\:,\ :
o
R X

.......




E?i Table 5. Metric Applicability and Automatability (Part 1 of 6)

METRIC | REQTS | ---- DESIGN ----

AD  McC DD

TR.1 Cross reference relating modules| N
to requirements |
CP.1 COMPLETENESS CHECKLIST
(1)
(2)
(3)
(4)
(5)
()
(&)
(8)
(8)
CS.1 PROCEDURE CONSISTENCY MEASURE
(1)
(2)
(3)
(4)
CS.2 DATA CONSISTENCY MEASURE
(1)
(2)
(3)
(4)
(s)
AC.1 ACCURACY CHECKLIST
(1)
(2)
(3)
(4)
(5)
ET.1 ERROR TOLERANCE CTL CHECKLIST
(1
(2)
(3)

P
4 3
2 Z < 2Z < < < < <

Z < < Z < < < < <
OO0 < < < < < < <
a2

Z < <« <« < < < < <
< Z < < < < < < =<

a

XA

< <
-

]
o

2 2 Z Zz

2 Z Z <

< < < =<

< < =< =<

-4

Z
Z 2 < < Z
=<
< - < < =

< < < <

Z 2 2 < <
zZ2 z 2 2Z Z
ZT < < Z Z
Z <X < Z Z
< < 2 Z 2

L

z 2
2 <
< =<
< =<
< =<

.
[
2 s s

‘.

[
IR

l
l
|
|
I
I
I
|
I
I
|
|
I
[
l
I
I
I
I
I
I
I
|
!
I
I
I
I
I
|
|
I
I
|
I
I

K

]
-

12 Y
[ ’,‘/.I'A‘I .
R R Tt )

.
»

A A A

28 Automating Software Design Metrics

ALY
XNl

'I
0%

s
)

)
)

O 1_.
~ J

\\_.\‘.

Nia
Nia

YO
YO
N3
N3

Nia

I
I
I
I
I
|
I
I
I
!
I
I
I
I

N1a/3}
N1a/3|

N3
N3

Note

Note

Note
Note

Note
Note

Note

YO/N3| Note

N3
Nta

-
-

o'

ﬁ&\ﬁhbl

I
[

‘.l




TR

..--.-.._.\-- . L .t ..\... NN M r.-.)- AN e re e, PR Chel) J
BTN . g v ...--Juuuf. BTN ...\ A A Y [ IR S ) LA A AN
R . . . ¥ vVoela a8 Pl o B AR A A . S SRR Lhg, NS
e L : . h TSR I o S SN GRS AT WA W WY LN S o e s Lt Y MO
X RPACAPREATE FLI AN, AP LI P AP ARV N S % 1 Tl S S ol
N p LA A AL P A e
o
(o'}
[} ] [
o2 b 2 & 2
o 0o [} o 0 [+] [+] u
— z z Zz z 2 z z U
® — - _Z__ZZ -
- —_—————r e — ——
o [] - - 2
Yt - , b o > re)
LI ) > Z 0
o 2 ' oO0o0n - 0 © © o 2
OSSN0 N~ o~ -
~ < " 2 2Z 2 2 22 2 v 2Z v 2 > Z m Z > mN v [ . > ] ] [ . L] + ' . > nV;‘. [ . . ' [ =
T - - - T ——— —————— ——
e} nlr. . - - oo o
p..m $ ' Z > > > > Z > > > z > z > > > > > > > > O 0 a > > >>>>>>>>>>86608a m“
1
a _ ¢ 3
) L]
>y " a s » - b bl
.R v an Z > > > > Zz > > > z > z > > > > > > > > > » Z > zzzzzzz22>>22222 o]
o L]
- 5 : [~
-t m& . Z > > > > Z > > > Z > z o °
a v > >z zZz 2z 2> >022 > zZ22zz2Z2Z2ZZZ2Z2ZZZZ2ZZZZZ2 -
% a ' H
o v o Z > > > > > g
m P2 > zzz 2 z > Zz > 2 2> 22 2 > > 2 > ZZZzZZ22ZTZTZTZTZZZTZ2ZZZ m
o ' ' -1
o ! 2
= - - - - - F - - - - - - - - - T T T = <
< v +
m u > Z2 ZT Z 2 > Zz Z2 2 > Z > Z >z 2z 2 2
ﬁnu -n_-K._ ' > Z ZT Z2 Z 2 ZT T Z =Z Z Z2ZZ2ZZTZTZZZ2ZZ2Z222Z2Z22Z2Z2 sna
L]
0 _ _ '
- e e o e e e e e e e e e e e e e e -~
> ' &
D : 3
w i 7]
[
. ' a o 2 [- 4
(a, - =} a o o o )
o] Vo ] w o w a p=
(] ' — @ o 2 o] s
0 . « w wh 2 o
[T ) w [+ 4 v 2 S
ksl v oa « w P m z &
| — v O . ] 5] w v} 17 a
. a, ' o o [=] [ad X w o
b a v a = o« > [=3 x O ~
¢ " X =] < w w w 2 Z
< ] (%) x o o o v = g
. ' 2 =} a Q >
_ 0 i 3 3 5 3 & Eaf8 3
\, ' ' @ (3 [+3 [-3 pe} nUU“M © a
k H ¢ w w [ = @ o> u
- 4+ " o> > > > v U“NO 4
4 o P g g S &8z 55w S
‘ ¢ > > > > ] s 84S
) P8 o8- -B8.-8..% .S 2 g
—— — — —_ _—— R e R e i i e e N R T T A e e e e e e e e e e e T e
ﬁ.. f W or N MY N W NOY WY W W NMY 0w ®
. w oo (EISeIE¥IocIgCogcoicsoieoetzzggigyosoireceeecaezee ©
‘.\.A R = - o “ " - o — . - e e e
g w - - - - — . . .
P w x " w w w w n e w o
r' 3
g
N
/
.
‘\
»
r
’
-.
\-
,

,........ et ..-.---.‘..‘-.\

LAY

“ihe)




Me -

Dyt

el

' W A

s
-

Table 5. Metric Applicability and Automatability (Part 3 of 6)

METRIC | REQTS | ---- DESIGN ---- | IMPL

MO.1 STABILITY MEASURE - applicable
MO.2 MODULAR IMPLEMENTATION MEASURE
(1)
(2)
(3)
(4)
©(5)
(6)
(7)
(8)
EXTENT TO WHICH MODULE IS
REFERENCED BY OTHER MODULES
IMPLEMENTATION FOR GENERALITY
(1)
(2)
(3)
(4)
(5)
DATA STORAGE EXPANSION MEASURE
(1)
(2)
EXTENSIBILITY MEASURE
(1)
(2)
(3)
MODULE TESTING MEASURE
(1)
(2)
INTEGRATION TESTING MEASURE
(1)
(2)
SYSTEM TESTING MEASURE
(1)
(2)

zZ 2222222z
< Z < < < Z Z <
O < < < < < 2 <
< <« < < < < Z <
O < < < < < < =<

30 Automating Software Design Metrics




Table 5. Metric Applicability and Automatability (Part 4 of 6)

PRl N NN v v

@ Popta e
.--<~f\---~sh~-q~\‘ .ﬂ .- - .'--\ l-.q_ _._ .

T\....‘\ L .rf\r...;.:......k~

L}
(=] . o~
[ [ ~ * a D » =
5 ' - - o~ - o - - N ¢
< [} L e I | (I T T T B ) P-4 Z v =~ Z Z 4« v o0 Z ¢t a0 2Z > >
L}
.
— . M - »
W ' > > > > > > > > > > > > 00 z > > > 5> > > > > > > > > > > > > >
L
L) )
L}
’
. L}
L= S} ” » *  *
' v Z Z2 222 2 2 2 Z2 Z 2 Z2 2 2 > > Z > > > Z2 Z2 Z v o > Z Z Z > > >
’ L
L}
4 ’
a o ¢ - -
..MW...N ZzZ 222 2 2 z2 222 2 2 > > 2 2 > > ZT Z > 00 > 2 2 Z > Z 2
'
w 3
o ' «
+ . -
.w.N Z2 22 Z2Z 22 2 zZ2 2 2 2 2 Z > Z2 22Z22Zz22Z222Z v Z2 Z2 222 2 2
. '
¢ L}
' .
L}
L
wr '
g '
...0.. t 2 2 2222 2 2 2 2 2 Z2 Z2 2 > ZzZ 2 Z2 222 Z 222 2 222 2 2 2
L
[+ 4 1
L}
'
' . >
' [ Q
’ = 4 us
' w w o
. [ - o
. - O v
] v - <
' o w uw w
a b4 w - Z u =
‘ tw (44 Z O w
' = e w >
TN E 2 = v U Q
T - O [ w ow Z 4
v 20 uw 2 x o v}
() O« — [%2] —
[ TS -4 2 0O wn (&)
v X O v QO - w —
[ -] w Zz w O w
¢ O wv w o x O O w
v 172 Z w W]
[ VU VY ) w w - a
v 0O Z > a [S I w
. w - = Z O w (4]
- > > - Z a O > <X
L o ur w 2 J - w
I I -~ F @ J o |
[ ol & | @ w 2 O « <«
2w [ Ju V) w. o <
P S TE N e el I U B i i e i B = B R e T T e T T N N e N i e
DL T N T WY WE W NS OO W2 T NOYN O ®0O0d T NMT N0~
(S P = T S = T T T . = G N N T = Y N
-4 f} ~
[+ 4 [ S '] ™ - o~ ™
o= PR . . . .
W (=Y« [a) w (W) w
x .SS. n w w w

PP -
.-.- ) -\-t “
LSS
P ]

.-A-.--.

.._.. s

.\\\\\-

31

Use, and Automation of Design Metrics

On The Development,

.-..-..-




S e M D O e A N N AN AN S SR S i

DANARE NN E RANEARL SR AR AL LI £ LN ) S A e

Table 5. Metric Applicability and Automatability (Part 5 of 6)

METRIC | REQTS | ---- DESIGN ---- | IMPL | AuTO |
| | ap MeCc 0D | | |
------------------------------------- R R Ry R
SE.1 STORAGE EFFICIENCY MEASURE | | | ] | Note
1) | N ] Y Y Yy | N | Nta |
(2) | N Y Y Yy | v | Ntp |
(3) I N ] Y* N Yy | v | N3 |
(4) | N N Y Yy | v | Nt
(5) I N \ Y y | v | N3 |
(6) I N ] N N vy« | v ] N3 |
7 | N | N N N O] Y |- |
(8) I N N N N | D1} - | v
(9) | 8 | - ot - | o1]- | o
.2 (10) I ~ | - o+ - | ov]- | yihth
i ., %
(11) N N N N | D1 - | e
5 AC.1 ACCESS CONTROL CHECKLIST | | I I | Note Y
\ 1 by | Y vy | v [N | Vo
® (2) Iy Y Y | vy | N3 | o
o (3) | v | Y i | N3 |
s AA.1 ACCESS AUDIT CHECKLIST } | | | | Note
e (1) Iy v | v | N3 |
_:' (2) I v | Y Y Yy | vy | N3 |
- OP.1 OPERABILITY CHECKLIST | | . | |
1) iy | Y Y Y | v | N3 |
(2) oy ] A Y Y | v | N3 |
(3) | v | Y Y Y | v InN3 |
(4) I N N N N | Y |- |
(5) | N Y N Y | Y | N3 | Note
(6) I N Y Y Y | v [ N3 | SR
(1) I N Y Y Y | v | w3 | A
- TN.1 TRAINING CHECKLIST [ [ [ { | ]
o 1 I N Y* N y» | v | N3 | Note N
oS (2) I N ] ¥* N ¥+ | v | N3 | Note AR
- (3) | N | Y v vy | v |N | ::j}'::?
A CM.1 USER INPUT INTERFACE MEASURE | | | | | v
[ (1) | N N Y Y | v | Nta |
N (2) I N | N Y Y | v | Nta |
N (3) i N | N Y Y | ¥ [N |
ujf': (4) | ~ Yy v vy | vy INs |
N (s) N NOOY Y ]y | N3
Y (6) ooy | y Yy Y | vy | N3
e
2
s
%4
[~
2 32 Automating Software Design Metrics
L 4
o
P
P
X
o

'.. E ‘- . .‘ ‘{"---‘.-.i.l" . et
LRI N A LA N LR R ) L)
T . A ACREACAZAT AR A

. - AN YA S LS LCOITRNA
L] Pd o Ad » L - - ™ -
ARALEN CRERRY -‘.'(\'TN A O RO «.‘(\.\1‘5\.‘(2\ DL T




X\

o T I 4
_I_l’r'llt‘s

e e

. 2
0 .
LA/ Y]
etats

'
»

METRIC | REQTS | ---- DESIGN ---- | IMPL | auTO |
| | aD MeC DD | | | )

----------------------------------- R R B R ERERL] ]
CM.2 USER OUTPUT INTERFACE MEASURE | | | | | 1

(1) | A v y | v [ N3 |

(2) | N Y ] vy | v | N |

(3) | N | N Y Yy | v | N3 |

(4) ! N | N Y Y | v | Nia* |

(s) I N ¥ Yy | v | N3 |

(e) | N | N Y y | vy | N3 |

(1) | vy | Y ¥ Yy | Y | N3 ]
§S.1 SOFTWARE SYSTEM INDEPENDENCE | | | | |

1 | N Y y | v | Nta |

(2) | N N ¥ Yy } oy | Nt

(3) | N | - p3a - |} o3| - |

(4) [ N | - 03 - | p3]- I
MI.1 MACHINE INDEPENDENCE MEASURE | | | | |

(1) | N N? Y Y2 | Y | N3 | Note

(2) | N | N? Y Yy | v | N1/3 | Note

(3) | N | N N Yy | v | N3 |

(4) N | N N Yy | vy | N3 ]
CC.1 COMMUNICATIONS COMMONALITY ] | | | |

(1) | v N N N | N |- |

(2) | N | ¥ Y y | v | N3 |

(3) | N | Y Y Y | vy | N3 |

(4) N Y \ y |} vy N3 | :
DC.1 DATA COMMONALITY CHECKLIST | | | I | :f

(1) | v | N N N | N |- | RO

(2) I N | vy v v | v [N | o)

(3) I~ | v v v | v [N |
CO. 1 HALSTEAD’S MEASURE (LENGTH) I N Yy N Y | v ]yt | ii?:f
""""""""""""""""""""""""""""""""""""""""" S
.............................................................................. .
MCCABE’S CYCLOMATIC COMPLEXITY | N | v y | v |2 | ;:f
"""""""""""""""""""""""""""""""""""""""""" '}":.
HALSTEAD’S METRICS I | | | | :{:{:
Number of distinct operators I N Y Yy | vy v | Can
Number of distinct operands | N | Y y | v vy |
Number of total operators | N Y y | vy | vt |
Number of total operands I N Y y |y |yt |
Vocabulary | N} \ y |y vt |
Length | N | Y y |y v |
Difficulty (1/Length) | N ¥ Yooy v
volume | N Y y |y | vv |
Effort | N Y Yy |y | vro |
Program leve!l | N Y y |y vt |
Language level | N | \ y ooy |yr |

On The Development, Use, and Automation of Design Metrics 33

Table 5. Metric Applicability and Automatability.

(Part 6 of 6)

e AN
NIRRT A

[



ET.3(2,3) These metrics ask whether or not all loop and multiple transfer
index parameters and subscripts are range checked before use. A higher level
implementation language may have these capabilities.

SI1.1(3) This metric asks whether or not module processing is dependent on
prior processing. Evaluation of it depends on understanding the content of
the module, hence the "N3". The "Y2x" is to indicate that reuse of local var-
iables could be checked by interpreting tab statements, but is a difficult
job. Though the no memory principle is usually a good one to follow, there
are cases, like state machines and filters, where it is not the method of
choice.

SI1.1(6,7) These metrics have to do with database characteristics. DARTS
could be modified to support them by addition of data structures. The number
of variables could be used for (6), the size of the database.

S1.2 This metric asks whether or not a structured language Or preprocessor
is used. As described, it is for the implementation phase. An analog could
be developed for the design subphases.

SI1.3 This metric measures data and control flow complexity. It depends on
the feasibility of deriving a graph representation from the DARTS database.

S1.4(1-4,6) These metrics measure coding simplicity using various methods.

Analogs could be developed for the design subphases.

EX.2(3) This metric is the percent of speed capacity uncommitted. Though
[McC 79) show its application during implementation, it should be included in
the design phase, since tight machine resources have a dramatic effect on
design.

SD.1 This metric measures the quantity of comments. An analog could be
developed for the design subphases.

SD.2 This metric measures the effectiveness of comments. An analog could
be developed for the design subphases.

SD.3 This metric measures the descriptiveness of the implementation lan-
guage. An analog could be developed for the design subphases.

EE.1 This metric asks whether or not the performance requirements are
allocated to the design. If a document existed which tagged each requirement
{say by paragraph number), the tags could be included in the requirement and
design diagrams. A metric could then be devised, but it would have the prob-
lem of quantifying completeness, since the requirements to des< ;» allocation
may be many-to-one, one-to-one, or one-to-many.

34 Automating Software Design Metrics

»
r‘r_‘r:' ’.

T AL N T N T TR T S T Y T N W W T T T T T - . ki
A SR A GRS O\ LSRN LA\ SIS 2 M L C IR AC R St RN S0 A A AL AN W o ) o]

R

*
_.

2% Ball
L
e e

fEL

{
i
{

S48 Y
Py
AR

YT VY e ey

W

- .
\]

LS B

e

rroroy
.l.l‘.l’l’l" ”
F o s "'

‘Jn v e

1@ -
B

e
a0

. v .
r
o8 A
v

»
'd

e
» ‘,l
0




EE.2(1) Tnis metric asks what proportion of non-loop-dependent computa-
tions are in loops. Some higher level langquage optimizing compilers will min-
imize this. There may be practical exceptions to this principle.

EE.2(8) This metric asks whether or not the storage facility is used effi-
ciently. 7The definition given is too vague for an evaluation to Dbe made,
depending on "evaluation of the utility of the storage facility". Also, the
table shows this in the design phase, but not in implementation, which is
probably a mistake.

EE.3(2,3,4) These are data usage efficiency measures for the implementa-
tion. Analogs could be developed for the detailed design subphase. A higher
level language with strong typing might detect/prohibit mixed mode
expressions.

EE.3(5) This definition is not detailed enough for an evaluation to be Tu;!ﬂ
made. -':'-i‘:'.
s

t :. :: ﬁ

EE.3(6,7) These metrics ask about the numbers of static and dynamic data
items. They may be applicable to the detailed design subphase, as well as b{::d

implementation. The variables could be partitioned into those which are -~
changed and those which are not, by interpreting the tab statements. The met- o
ric might be more suitably measured in a tool based on a compiler, since a -j

=

L %Y

v,

compiler typically processes this kind of semantic information. It might be
suitable for a PDL-like design tool.

SE.1 This metric is concerned with storage efficiency. It depends on a
variable having a locus of definition, which might or might not be true in a
design representation. If it is, the information necessary is present, but
the metric requires knowledge of the meaning of the variables, and so, is not
automatable.

AC.1 and AA.1 are further examples where the metric registers whether or
not a particular functional cabability is present in the system.

OP.1(5), TN.1(1,2) These metrics deal with job set up and tear down proce- &\f{
dures, and training material. Some of the specification called for in these ‘Q\;}
two categories should start during design, so that user feedback may be v}.;:
obtained to influence design. ‘.

::1;:.-'

MI.1(1l) This metric measures machine independence in terms of whether the f:f:v
programming language used is available on other machines. If the implementa- 1}"{?
tion language is chosen early in the lifecycle, the metric could be measured g ;\;

o

during the design phase.

On The Development, Use, and Automation of Design Metrics 35

- - L)
. » Y
et A A s
- . e e

RN RN NN
ofe i..": " AN l._\ f: POV R AT RN AL ¢ \‘.L“}M-\fl..{\

F



‘

A

LA AR A LN AR
e e,

g
y
~

2

e
P

5L

ey

,

*
[}

L

?

P
LS Y

.
.

P
a0 e

B Tkl et Tk Al et it st .t S e 3
SN SRt vt <
R T ST Al Aol Ak et S p S A

MI.1(2) This metric has to do with limiting the number of I/0 references
in a module. "I/O reference" is not defined specifically enough to enable an
evaluation.

2.2.6 Metric Automation Potential Summary

The totals for each category used in assessing automation potential are
shown in Table 6 for the McCall metrics. The McCabe and Halstead metrics are
considered separately, below. At of roughly 100 McCall metric components,
about 25% (29) are good prospects for measuring in DARTS (the YO, Y1, Nla and
Y2 categories)..

Table 6. Automation Summary for McCall Metrics

Category Total

YO
Yl
Nla
Nlax
N1b
N1
Y2
N2
N3

[

T NOS DS O,

m

There are a number of metrics which have as their values the proportion of
modules which conform to a set of conventions: naming, standard represen-
tation for procedures, data, etc. They are mostly in the N3 category. The
conventions themselves are left unspecified, since different ones may be suit-
able for different projects. A design tool would clearly be able to check for
adherence to a particular convention.

Another class of metrics is composed of what are really checklist items,
like making sure that all device errors are handled. They make up the largest
part of the N3 category. The metric depends on an assertion by a person that
a module meets a certain criterion. This checklist capability 4is a function
separable from design representation and metric measurement. We should con-
sider whether a tool, or part of a unified tool package, would be of use in
this area. It could act as a prompter for the system developers, and a quali-
ty assurance audit tool. The metrics in this class could be measured from it.

36 Automating Software Design Metrics

AT TS PSR R ANAN
\' .“‘ - - - > ~ L]
* --:‘t(.'\-‘-. J‘\-‘*- *

.
s

. ST e
P

...
L,

. A . . ."_..."..‘.. A -."-
TRTA TR AL SO AT PRSP, A IS Vo PN Y

s ¢ v ¥ * 5@
AP i
«Celen
2 e el
PRI Rt I
P ST

KR
S

-
AN AN )

‘.ﬂ'”

N )
L
R

f".k

b

iy



RO I R A A N DA Dr b Sl A S A Sl el st S e o Sl A A e A A SR T8 A S Adir 12 T Yol s A IAdIP S el st St SR Mot e AP SR A
. - W . & . . 2 - . - - . . . LR . - . .. MR S N .‘.‘.'.'.‘.',-.v Pt ‘. ‘. .o .

A few other metrics have the purpose of promoting conservative code prac-
tice assuming that the final code will be in assembler language, such as loop

index range checking. As indicated in the notes for the table, they might Dbe M0

unnecessary if a high level language were used. FQ

',h?::"

The McCabe cyclomatic complexity metric may certainly be automated, since ;}ﬁx

the DARTS primitives represent the structure programming control structures. :{{{:

AL L

.

The Halstead metrics may all be automated, since they all depend on the Z:i:

basic counts of operators and operands, easily captured from many forms of 5"!3

design media. S

NG

Ih-h .'),

The McCabe and Halstead metrics were chosen for use in the other tasks of ’;rt

the project. Many of the McCall metrics have some components which are suit- 'ﬁft
able for automation in DARTS, and some which are not; which makes them of

dubious use as a demonstration of automatic measurement. The McCabe and Hal- ._

“~

stead metrics present a coherent picture of the complexity of the software,
which is one of the McCall metrics. In addition, the Halstead metrics have
been shown to be of some use in predicting planning parameters.

2.3 DESIGN METRICS AND DARTS

i

P A,

The next sections present the software requirements anéd design for the
McCabe and Halstead metric implementation in the CSDL design-aid tool DARTS.

r}:;
-

L
.0t
"e'e
'@
s 2 3

2.3.1 McCabe's Cyclomatic Complexity Metric

=
s
S

v

ey

.
)
.
.
e
L]

This section includes the requirements and detailed design specification
for the implementation of McCabe's cyclomatic complexity metric [McC 78] in
DARTS.

WP
1

N PP

’
o'i.!:

. a1t
)
LI I I 4

2.3.1.1 Requirements

1
e,
e 4

The McCabe cyclomatic complexity metric shall be implemented in DARTS.
The McCabe module shall be in PL/I, fit into the existing software structure,
use the existing database access routines, and use other existing utility rou-
tines where feasible. The user shall specify the top node and depth of the
subtree to be measured. The output shall show which subtree was analyzed, and
include the metric values for each distinct module and the total for the spec-
ified subtree.

|

Special Processing: DARTS uses a hierarchical representation technique
which allows a user to truncate trees at any level. This is useful when it is

g On The Development, Use, and Automation of Design Metrics 37
@
= ~9_
o Ry
o w7
X PR
\N: . -\ : _:v
.'.n\-. ‘::-:.




3

Viory

’

R
(2 SRR

Y

£
FAR)
(]

@ty

AN
. "."‘l-

[ ~

advantageous to hide some details of a design to show only the higher levels.
Truncation often leaves ambiguous iterator and selector nodes (decision nodes
with no offspring). In these cases, if the tab for the iterator or selector
has predicates in it, processing shall be as normal. 1If the tab has no predi-
cates, an iterator shall be assumed to have a single simple predicate to ter-
minate the loop. A selector shall be assumed to have a single simple
predicate used to distinguish between two offspring (an IF-THEN-ELSE).

2.3.1.2 The DARTS Implementation of McCabe's Metric

Cyclomatic complexity may be measured from a DARTS representation of a
design, since the DARTS primitives represent control flow. The definition
based on counting the binary predicates is the most natural one to implement,
since the non-real-time control structures in DARTS are the same as those used
frr structured programming.

The following figures show the DARTS tree representations of the common
control structure primitives and explain their graph equivalents. The trees
for component and exchange nodes are not shown since they are just single
nodes: they do not represent any control structure.

The coordinator (Figure 2) represents parallel execution of two or more
processes, so the equivalent graph would include each process as a separate
unconnected component. As discussed below, the graph medium does not allow
representation of control interactions brought about by timing relations and
data exchanges, so coordinators will be treated as sequencers for this meas-
urement.

The DARTS iterator (Figure 3) can be used to represent any kind of loop,
including FOR, WHILE, or UNTIL 1loops. It may have one of two graph equiv-
alents depending on whether the loop termination test occurs at the beginning
or end of the loop. Any number of steps may occur inside the loop.

The selector (Figure 4) is used to select one from a group of alterna-
tives. It may represent an IF, IF-THEN-ELSE, or CASE construct. 1If n-1 pred-
icates are specified, an nth selection may be chosen if they are all false;
but there need not Dbe an nth selection. Its graph would include a multi-way
branch or a series of nested binary branches.

The sequencer (Figure 5) just ties together nodes which are executed one

after the other. It. graph equivalent is linear. Any number of steps may
occur in sequence.

38 Automating Software Design Metrics

A
TR LA GRS

-
AR LY
oL

e
It

SRS Y

RN AN LS AN R i b e et TN S AU 0 S A - S AP B A Bl Ju MR |

%




R AR Y S I B Tt Bl
SRGAEMARARLLA ek

[N

®
o

)

(4
s

l I‘L_»‘\."- ’\ J.'

RS

3
/SNL ** PF3IGN AN e
FOI REAL=TVAE $Y:VEMS .
PLOTEL € (01 50 ( T CCORDINATOR
DATARAS § L3 PCCABE N 3
OWNER 1S NMSHUOG e ALl CEJEUATIONS

7/
PROCLSS 1 PROCESS 2 > “re PROCCSS M
\

\.

\\\--._.-___// \/

Figure 2. DARTS Tree for Coordinator

CSDL ** DFSICN AIDS
FOR REAL- TIME SYSTEMS

PLOTTRFE (VIXED)

DATAIASE 13 MCCADBE

OWNEIt IS NMS1106

2 APR 1023
oL

ITERATOR

TOPHODE: %
ALL CENERATIONS

Figure 3. DARTS Tree for Iterator
[ %4

On The Development, Use, and Automation of Design Metrics

o
o
N
~
b_'

L) 3
LN
- )
N
PRI g




L
b~ .
«
I\-.‘
o™ . [}
P DESIGN ALDS PAGT. 1
t FOH REAL~TIMYE SYSTEMS DATE: 12 APR 1683
e PLOTTRFR (FIXED} T D257
- BDATARARE IS MCCAUK TUPHODE: O
-('~. OWNER IS NMSIIUG ALL GENERATIONS
“~
"
o
-
o’
“
-
-
~
I~
-

'r‘r“\ 4 .

G4

e

.
fe A Ty

SELECTSON H

SELECTION &

—

oy Figure 4. DARTS Tree for Selector

7
DL DREZIGN AIDS PAGE 1
FOIR REAL-TIMI SYSTEMS DATL 12 APR 1963
PLOTTITREE (FIXED) TIME: 12203512
DATABASE 13 MUCCABE TOUNODE: 7
OWNER 1S NMSH1IOU ALL CENERATIONS

-‘":
‘4
P

N~ X "5‘
"'/- 7.4 72 7.3 Y,
i
3 e STEP N TS
N S
A

4

[N

« o 4
o 4 %
LA RN
Pl
PRl

Figure 5. DARTS Tree for Sequencer

.,

l;?.} .

‘. ‘s >
AN

40 Automating Software Design Metrics

Y

-
%\\""‘-_ N x*\-. x‘\.‘\ SR A " \\' AN
A ‘o \I‘._ - " "J\" 2 b”'-. o i.‘_-.‘:\ SRS
. iﬂi‘ \

-, \ -, =" MRS '
NS AN aote! At A
A .Lr};_.-. .Pi}r "*ﬁ'.-. e NN

Ny
0




B I L IR SRR L A A I T SR T e YA YW W T W YW YT T - w - .
Tl RS COK AN L B A | 3 . A *. ,_‘, .‘_ < A‘{ v - v DAL SV N SR A S BAL us i wan of AP A A ™ it g P At pd i iy |
-t . . N P S . . - .. ~ - E A D A PN .

The rest of this section details how the metric is implemented in DARTS,
ensuring that the criteria are met for application of the simplified defi-
nition based on counting decisions. That is, that the control graph for the
DARTS tree is connected, planar, and has a single entry and exit. Points con-
sidered are:

1. the applicability of the metric to multi-process systems, and systems
using the real-time data exchange construct,

2. the influence on the metric of the statements of the tab language,
3. how the number of modules in a system will be determined,
4. and how predicates will be counted for each type of DARTS node.

The cyclomatic complexity metric is not intended to measure complexity due
to real-time aspects of a problem. Another metric must be used to cover this
area. The real-time constructs, coordinator and exchange nodes, may have
predicates implied in their implementation, 3just as the implementation of
sequential control may; but to the designer, they are primitives. ExXchange
nodes are treated as component nodes and coordinator nodes are treated as
sequencer nodes. Since the complexity due to timing requirements is not
reflected in this metric, this is a reasonable approxXimation. See the dis-
cussion of BLK and SEG statements, below, for causing the processes under a
coordinator to be handled as separate modules.

The general schene for measuring cyclomatic complexity is to traverse a
user-specified subtree, accumulating the number of decisions and simple predi-
cates for each node. The number of decisions plus one yields the lower bound
for the interval described by Myers, and the number of simple predicates plus
one gives the upper bound. The value of the metric for each module encount-
ered is printed, as well as the total for the subtree specified.

A software design in DARTS can be either abstract or detailed. The level
of detail is represented by using both uninterpreted and interpreted node
forms. Uninterpreted nodes are those which 4o not contain any primitive oper-
ators such as arithmetical or logical operators in a special tab area beneath
the node (see example DARTS trees in the Appendices). Generally, nodes
appearing near the root node of a process architecture tree are more likely to
represent uninterpreted functions. Interpreted nodes are those which contain
primitives such as arithmetic or logical operators in the tab area. These tab
statements are used to indicate actions which occur at the node, conditions
under which control transfers are made, or to further define the node.

The absence or presence of these tab statements makes a significant dif-
ference in calculating the McCabe metric values, so0, two methods are used.
For nodes without tab statements, the entire user-specified subtree is consid-

On The Development, Use, and Automation of Design Metrics 41

“m e e AP I
e

(¢

a‘\ '5\.




AT

s
.. L .

)
v

n" l..

o
a'ea
st e

. 8

P )

¥ T
o
o "....
" o
5t

4
.Y

T R R T T T R N R N S R N T .

P P -

ered as one module, and the type of node and number of offspring determine the
number of decisions and predicates. This method is wuseful for high-level
designs, where the simple predicates in terms of actual variables and the
software structure in terms of modules are often not known. For nodes with
tab statements, the statements are inspected and used to determine the number
of modules and the number of predicates. Details on the recognition of mod-
ules and the counting of predicates follow.

Modules in DARTS are indicated by two statements in tabs: BLK and SEG.
Each statement assigns a name to a subtree. The SEG statement defines the
subtree as a subroutine which may be invoked by an INV statement in a tab in
another part of the system tree. (Without SEGs, commonly used subtrees must
be repeated at each point of use).

When a BLK or SEG statement is present as the first statement in the tab,
the subtree for that node is recognized as a module, and a separate count of
decisions and predicates is made for it. 1Its metric value interval is shown
separately in the output. Since a coordinator node is handled as if it were a
sequencer, the processes under it must have BLK or SEG statements in their
tabs if the processes are to be handled as separate modules.

A list of the modules invoked is compiled, and an output line referencing
a footnote is output if the corresponding SEG is not present in the specified
subtree. 1In this case, the totals shown for the user-specified. subtree are
incerrecst, since the values for the missing SEGs are not included.

In the following specification for how the numbers of decisions and predi-
cates are determined, "simple predicate" is used to indicate what McCabe calls
a predicate, and "tab predicate" is used for a DARTS tab predicate, which may
actually be a conjunction of several simple predicates.

For nodes without tab statements, each iterator node is assumed to have a
single decision to terminate the loop. Each selector node is assumed t¢ have
a decision to reach each of its offspring except the last (the ELSE branch),
so the number of decisions is the number of offspring minus one. If there are
no offspring, the selector is assumed to have a single decision used to dis-
tinguish between two offspring (an IF-THEN-ELSE). All other node types have
zero decisions. For all node types, the number of predicates is the same as
the number of decisions.

For nodes with tab statements, all node types except iterators and selec-
tors again have zero decisions and zero predicates.

Iterator nodes may or may not have a tab predicate specified in the tab
text.. Those with no tab predicate will be assumed to have a single unstated
decision/predicate for terminating the loop, as for nodes without tab state-
ments. For those with a tab predicate, the number of decisions is still one,

42 Automating Software Design Metrics

AGRLAE AT TR RS ) P R e
~.}_.\‘.*-_.'-:.\::\‘A-.':.\:.'_x'g.'_'.',\'f A T
_-.—. - .."..'.'.".'-."'-..‘..’.
ML L N A AT

—e
-

o
o
2




A MM AR M A M DAL AN A A A N AL AR R AT A A A

but the number of simple predicates 1is the number of ANDs in the first tab 'ﬁ
]

-5 predicate plus one. (The number of ANDs is one less than the number of simple C
SN predicates which they join; and ORs are not allowed). Since iterators are T
used to represent a number of different kinds of loops, including FORs, WHILEs e

- and UNTILs, this method corresponds to mechanizing any Kkind of 1loop as a
- series of nested IF-THEN-ELSEs.

- Selector nodes also may or may not have tab predicates specified in the
~ tab statements. They are used to represent constructs such as IF-THEN-ELSE

and CASE, so more than one tab predicate may be present. Those with no tab
: predicate will be treated as if there were no tab statements. For those with

'3j} tab predicates, the number of decisions is the same as for selectors without

T tab statements. The number of simple predicates in each tab predicate is

”}: determined as it is for iterators, and the sum for all the tab predicates is

\;3 the number of simple predicates for the node. Again, this reflects the mecha-

( nization of any selector as a series of nested IF-THEN-ELSEs.

o “-

'::? A tab statement is recognized as a predicate according to the specifica-

SN tions in [csDLB82]. fThat is, if the statement does not begin with one of the

?52 reserved words (BLK, SEG, etc.), and it contains one of the relational opera-

”\i tors EQ, NE, GT, GE, LT, or LE. The tab statement TRUE is also recognized as

a predicate. Redundant or degenerate simple predicates, such as "X GT 3 AND X

A GT 3" or "TRUE AND X GT 3" are not detected. Handling of variable names which N
e are reserved words is undefined. T
o :1:-{4
v 2.3.2 Halstead's Software Science Metrics EEQ
<}_¢ This section specifies how the Halstead counting method, and the associ- ,4!
ifj ated metric calculations are implemented in DARTS to assess the quality of i}:.
A software designs. It 1is expected that +this metric analysis will provide ;{}
§“: designers and managers with useful feedback during software development. ::{'
".:‘) :':‘.
ﬁ). 2.3.2.1 Requirements e
:{ﬁ The Halstead parameters shown in Table 2 shall be measured in DARTS. .':
”{j Operators and operands shall be identified in the DARTS medium and a counting o
f:; method shall be defined which is consistent with the definitions provided in e
TN by Halstead [Hal 77]. The Halstead module shall be written in PL/I, fit into e
J. the existing DARTS software structure, use the existing database access rou- "‘
f}j tines, and use other existing utility routines where feasible. The user shall q_
-,:, specify the top node and depth of the subtree for which the parameters are to t¢
«iﬁ:‘ be measured, and the counting method to be used. The output shall show which bﬁ

- subtree was measured, which counting method was used, and the parameter values
e for the specified subtree.

PRy

iy
L
1545

s AR
“ela’els 4

On The Development, Use, and Automation of Design Metrics 43

.‘.‘-‘i'ﬂ'ﬁ'ﬂ‘l N
PRl 5
NN Rl

Yor

LA

.

i)




s
R/
2.3.2.2 The DARTS Implementation of Halstead's Metrics :'.‘,-:';-:‘
RS
The following discussion defines the identification of operators and oper- f{:J
ands and a method for counting their occurrences in a software design repres- ®
ented as a DARTS tree, according to the generalized technique developed in f?f?
Section 2.2.3.2. This technique evolved from prior work [Szu 80) and [szu A
81]. The DARTS Halstead Metric capability was implemented in three evolution- tf:ﬂ
ary forms, Simple, Uninterpreted, and Interpreted. For this project, only the :}}}
Interpreted form is discussed. :ifu
Since a software design in DARTS can be either abstract or detailed, the NS
technique used to identify operators and operands assumes that a DARTS tree C}ﬁﬂ
has both uninterpreted and interpreted node forms. Uninterpreted nodes are ﬁi{h
those which do not contain any primitive operators such as arithmetical or ,}f}f
logical operators in the tab. Generally, nodes appearing near the root node ;;;j
of a process architecture tree are more likely to represent uninterpreted )
functions. These nodes are generally identified as unique operators and con- ;ﬂlg
tribute a count of one to each of the basic operator equations. :ﬁ&‘

v
sy 8 x

Interpreted nodes are those which contain primitives such as arithmetic or
logical operators in the tab field. Control qualifiers (e.g., if, then, else,
etc.) are also considered primitives, as are semicolons used for punctuation.
A list of all primitive operators which are interpreted by the DARTS Halstead
module is shown in Table 7.

>
. =

Table 7. DARTS Software Science Operator Primitives.

sin if and dur | ~= =>  random :
cos then or imt * / negexp N
tan else eq loc [l > /* poisson -
arcsin call ne var & <> */ normal -
arccos whiile ge bgn - <= R blk E
arctan until gt end xx >z ; -
log repeat le mod - =< ( e
log2 case of 1t inv + => ) N
logl0 print seg = < :it
ESAN
'y

v
2"
'

The Halstead operands in a DARTS design are those data items appearing in
the tab field which are not operators. The Potential Volume (Vsx) is deter- .

vy
.

“~
; mined by evaluating fN;* as the number of data items on the INDATA (input ;ﬁ
AR data), and OUTDATA (output data) lists of the top node of the tree under meas- a'
- urement.
['.‘._"_’,
YASE
AN
h'_:.: :
CAC 44 Automating Software Design Metrics
3 "
A

’

".’

ML A S N e
oy
2B LYS Ty

N®

o
AR S RETR S L Tt o S S A Sl S e e e P U ST T T S T TR T S
D O O Lo S L AR A

.

2 v T Sy -« A W W " -I‘_--’-_-~\ X
B T Y A T N N T O TN O

LA



fla

NIRRT RIS RAEA

Gt e

o

‘J ‘- 'l

. % Yot -

-

L0,

| IR SeSIY oY, RO A B ‘_.'V_.‘_'.‘_-" »-:“\'.‘_‘7‘_- RO A AC AT A LA B SR 4 &4 RS AT NSO Aol e ST AR A St (SO i S s )

2.3.2.2.1 SPECIAL PROCESSING: DARTS uses a hierarchical representation tech-

nique which allows a user to truncate trees at any level. This is useful when
it is advantageous to hide some details of a design to show only the higher
levels. Truncation often 1leaves ambiguous decision nodes (i.e., decision Ve
nodes with no offspring). When this occurs, the node is redefined to be a __r!
uniqgue uninterpreted functional node.

2.4 USING THE DARTS DESIGN METRICS

Preceding sections of this report have identified metrics which purport to
determine the quality of software designs. These metrics can, at this time,
be used as comparators between functionally equivalent but different designs
but not as yardstick measures on designs in isolation. Several articles in
the literature have included examples of good programming style contrasteaq
with implementations which lack proper organization, structure, and clarity.
In some cases, the examples already contain relevant metric data, though in
general, the data is derived manually from the <code. This section is an
attempt to provide some empirical data to support the utility of automated
design-aids and metrics by applying the metrics to designs encoded in the
DARTS database.

Q.‘.l‘ 'n‘ ‘o .- , 0,

[N

In the two sections to follow, both the Halstead and McCabe metrics, as :{:
implemented in DARTS, are used to evaluate some simple and complex designs 'c:
which are encoded in the DARTS data-base. §3
'

L‘

2.4.1 Simple Examples

In this section, two examples have been taken from the literature [Ker f\
74). These examples are part of the CACM collection, "programming style", .

containing examples and counterexamples. They were carefully chosen by the R
authors to depict obvious differences between good and bad code. The examples ;5
chosen were alsc evaluated by the Halstead metric in an article by Gordon [Gor e

79). The results of DARTS Halstead analysis and Gordon's are compared. 1In ﬁ’
addition, the McCabe Cyclomatic Complexity is also calculated. "t

2.4.1.1 CACM Example l4a NS

This simple PL/I billing program was translated into a DARTS detailed
design, then analyzed by the DARTS Halstead and McCabe metrics. The DARTS
representaticn of the program can be found in Section B.l of Appendix B.
Figure 6 shows the PL/I code and Gordon's [Gor 79] Halstead metric analysis.
Table 8 shows the DARTS Halstead and McCabe metric analysis printout ggbles
for comparison.

On The Development, Use, and Automation of Design Metrics 45

. oS LAY et N o SIS
PO ST SRR RIS
s N R N T R N T TR
i LT U et e et e Ot N
R et e -‘.\ .\ ..'\ - \._‘\‘.‘\‘.\ o Y




3
TN
.r"
K
ro
Yo
>
.
-,
LI}
N

o

P
v

e
TR

PR RN)

.
e
.

g

.
L]
a1

x

'."f‘, a ;, %
RIS A I~

o7 Lt

1@

¢
“

v, ..-‘:c {'- '\(\._\"
L R R R )

RS e .
3 IVENR ¢

»

A ad i AN 4 A A SV At e N DA 4 R N M S A e
- - - - - - - - - - P Rl - - > - - - . - CE R

IF QTY > 10
THEN IF QTY > 200
THEN IF QTY > =500
THEN BILL A=BILL A + 1.00;
ELSE BILL A=BILL A +0.50;
ELSE;
ELSE BILL A=0.00.

The code of Example 14A,

m>

Number n b Ny Ns Vv l/ﬁ

14A 8 8 21 14 140 7.00 980

Figure 6. PL/I Code and Gordon's Metric Data - CACM 1l4a

2.4.1.2 CACM Example 14b

This simple PL/I billing program was translated into a DARTS detailed
design, then analyzed by the DARTS metrics. The DARTS representation of the
program can be found in Section B.2 of Appendix B. Figure 7 shows the PL/I
code and Gordon's [Gor 79] Halstead metric analysis. Table 9 shows the DARTS
Halstead and McCabe metric analysis printout tables for comparison.

46 Butomating Software Design Metrics

¥ TR T a g Ly 4 ’ N W W w wy Ly,
._-'?'.-'.‘.':J'.'--:.r.\r:-"? N, X 4_.5.'.‘\"1-:“.-?'{,."-'.\-" >
. . » . «® - b . RS Y
AR OO (N SR W M g
. . (3 aihd ) u‘ B X

-
.,
A
LI
D\‘

'S

wt
ORI
',

1.. -"
P AR
‘v '

e .

AN

v h e

eld

AR RN
2ad toadn

i
2o

‘.v-":'.- '.l-'

waltela
NS

Lttt

et

LA
RARAY
.

>
P

-~
RS

Ve e
'I&f * "l‘.,l
AP

n
’
]

'::, "-,.l. .l-.‘;:] !
s ""'-. .,

'h-
t
r

L)
s s
.

"':". '5

e ]
s

»

R/

Al




L ..o\....h-...\-‘- ‘t--. ... g .- \I-..(.h .
AN > .N\. L4

A AR OR DE NN

o~
<
("]
[}
-
e
: 2 m.m ‘11 ° g
;] -] & e
< k= 23 m o
~ ah 8.. m o
1 -1 w3 -
u ~83 LEL L L AR . m . . %
5 | HAN -
_ . o MEUHEHEHHEHHHEHHE ¥ 5
Bleléle]lelela]le|nlg
. |3 "' 13 B §
3 T H i 5
m mmmmuloo o &
Py}
m 3 {1 " 2
3 )
m mmn mumamnen | d Snxw M
a3 4 .
: L 38 g
n u Tm =
358 35 >
el | 3
3 =
2 []
& =3
: [+3
o o]}
= ~
o [ ]
? Rt ¢
[=]
e ! 1 :
s |k HHARALRALRHHE R :
* -
L m THRHEAHHHHRH LA -
° .w g ; THEAHALIRARHE ; 5
(g JHHHEHHERHHHHEH AL
& |dedd) B|oBwe. B[ 16\E(EIE[8(8G[EE\E(HIG[EI8IE[E]5 |20 .
| - 1.... q.s.\ v s, .....x f, o .h... .\f..f..“-. » ..‘..,.... l\..-.n..-..q-.. 2 .r 'w.n\..... -.\....“-. (n..w...........‘...q..ur. o .-. .W... f\..\..\-\f.;.........W-.&-\ LS Q .......4 '’ ...-.<..~.\n' r...-ﬂ\nc\¢\.~\~vpt.....\-. .-f.



.
.
A
O
RSO
L )

¢
Y
$ VA

LI AN DTS DN
ORI

"‘- WA "'i .

PR L)
St

)
’
.I e

do

IF QTY > =500
THEN BILL A=BILL A + 1.00;
ELSE IF QTY > 200
THEN BILL A=BILL A +0.50;
ELSE IF QTY <=10
THEN BILL A=0.00;

The code of Example 14B.

Number 1 D) Nl N, \% 1 /f. ﬁ
14B 9 8 19 14 135 7.88 1062

Figure 7. PL/I Code and Gordon's Metric Data - CACM 14b

2.4.1.3 CACM Example 15a

This simple PL/I program was translated into a DARTS detailed design,
then analyzed by the DARTS metrics. The DARTS representation of the program
can be found in Secticn B.3 of Appendix B. Figure 8 shows the PL/I code and
Gordon's [Gor 79] Halstead metric analysis. Table 10 shows the DARTS Halstead
and McCabe metric analysis printout tables for comparison.

48 Automating Software Design Metrics




.VQ

_ m w“x”-“-.---”..-.
2
.
A
2
2 -
"\ ..L
A 2 ..m
7 o
r., \..n
‘... r . 'L
; . . 1 AT~ ;
3 ot o1 | 3 . ¢
2 ¥ | 3 i3 mm &
W- m l”“ "M oot Uy~ ot d “ ‘Bn ﬁ
5 m T m . .
r”... ] mu o |lojojle~Inin|o wininlo mmm m. m
b ol fefm s |- m " ” ol “ ” w m L2
o Slelglils|elcls]d]3 °
g o T3 171218 B g
W. > m " " " Mv.
r, o 2l %0 .0 e L
. OJODWN -3
Y g £1688282:3 |, m g
.... . o
: aE “lf 2
v, m.ﬂ . mn L]
- -] “ u MeaMANNN | - m =3
. 1858 stad i
2 5 i 1 g
v... o mme M = M
3 3 238 358 .
. o
b §
q 5
s [=]
4 ) m ~
w. 5 m : .
. n” [
v a  |& s . 1E % -
5 . §5u35 2lE]. E ARBHAE 2
v o gyil SHHHRAHRAHREHMHEE &
7 P .m:m JHHHAHHRHHERHHER R AR It 5
L 129 3 = gle (8] |»
7 | g m m AHHHAEAHE el 4
v, & mewm 5, % SHHHIHE um:wm,mmm B
; B2z AN HEHEEHEHBHHEAHEHEHBEEHELL- d
2
f,
i
]
o Cv g s BN




IFX>=Y
THENIF Y >=Z;
THEN SMALL = Z;
ELSE SMALL=Y;
ELSEIF X>=Z
THEN SMALL=2Z;
ELSE SMALL =X;

The code of Example 15A

VA
"

LY
LAY

Number N2

LR SR

15A : 14

S,
L)

}"-....“. -
NN
e

.‘:..'. } .

2 2 A

[k

A
KRANRA 7

Figure 8. PL/I Code and Gordon's Metric Data -~ CACM 15a

PR ‘I.'l'l
1]
“.fl“ .

¥ v ®

1 J
'.l
L)

2.4.1.4 CACHM Example 15D

This simple PL/I program was translated into a DARTS detailed design,
then analyzed by the DARTS metrics. The DARTS representation of the program
can be found in Section B.4 of Appendix B. Figure 9 shows the PL/I code and
Gordon's [Gor 79] Halstead metric analysis. Table 11 shows the DARTS Halstead
and McCabe metric analysis printout tables for comparison.

. s
¢

v a4 \. 5 G,

P
[P SRR AT R A
. B . "t
P P L a0
% R S R
PR . L

el
LR T

B

50 Automating Software Design Metrics

a
“ie;

PR
4 A
+

=y & '-". ‘.

v
[ R
Y .5‘.",

’
57,




»~\. ...\.....\u 1%

. et lr e s
-
3 y
3 ©
3
W_“ ;
8 I
3 3 i |4l - 8
..._-. mu L n.l =
~ Bi | 3 25 | Ef g
% m 8% mmee |8 813 @
3 5 |yE i ||| - 8
. ] ao eleloale [_§
; SRR EE I E I EHEL 3 5
- a M EHEEHE
: g : dk 1UIE g
o o 8 o
' m xvzm < m m ;
”. m Nmn waneen |8 mmn M._ u.“hn.
- o mumm mumm ° e
w. C Mmmm mmm e sl
- ot
- 3 358 et I
", » =
. a )
‘ 2 " el| g

[4]
A & i ARAt || :
:, A mm g 5 w g 5| &8 A
S |he JHAARAHRBHRELA R L
g N o [ : [.3 a
: wm“ g JHHHRHHRHHEHEHE m,mm i 8
T Bt THHBH AR HRHEH R AR BIE
| TR PRI R HEEHEHE HHEHHHEE a|Ba
;
:

e e T e

FERLPLE S T pd sy
ca) e, ) [P .
@ ..a.' .I«-f--f-..,'. .q.\-\..n.n-.c\f.]‘

<. o 6 T 4y D T e




o«

AN

P

Py

SMALL =X,
IF Y <SMALL

THEN SMALL=Y;
IF Z < SMALL

THEN SMALL=2Z;

The code of Example 15B.

Number n n2 Nl N2 \'’ I/f.\, /E\

15B 5 4 12 10 70 6.25 436

Figure 9. PL/I Code and Gordon's Metric Data - CACM 15b

2.4.1.5 Analysis of the Simple Examples Experiment

The subjective evaluation by the authors of the programs [Ker 74] suggests
that Example l4a is better than Example 14b, and Example 15D is better than
Example l5a. These findings were reinforced by Gordon's manual application of
the Halstead metrics [Gor 79]. The automated DARTS Halstead analysis of these
same examples reproduced Gordon's data, and, in addition, the DARTS McCabe
metric verified the results in one of the two cases. In the case of Example
14, the metric values were the same. By examining the control structure of
these programs, it is obvious that the McCabe metric cannot distinguish
between these two similar designs at the level of detail presented.

2.4.2 Complex Examples

In this section, the metrics described in Section 2.3 are applied to exam-
ple real-time system designs. In order to illustrate the ability of the met-
rics to distinguish between designs of differing quality, two candidate design
solutions to a complex problem are dintroduced. The designs are expressed
using the automated design medium of DARTS, and the metrics are applied auto-
matically.

52 Automating Software Design Metrics

e

T('." "l

RN
DAL
P AR
BRI

coy -
™ ‘(' .l
oy <

77

.
‘.

* v -
P

P
(3

A X
"‘

v
..
5
'
rle

.
.

M
MEYAE7 Y

»

Y'_-" "I




NN

@,

PRI A )
[ 2oe .
,-.-h»...h

§ m
... n
..” S
(8]
v -
._ [ 9]
X a m m Lm " " m
¥ 5 £d 3 | §
: - i | g % | £ 5
g 5 ~8% wenew |8 I -E m
: 3 33 i
. o yE e mm o a
3 | ololefe- (ol e lss alatele s | % 5
-. .m - ” ~ o o u (-] - u n n
‘ 4 &l m 5]
... w— m a m ~ N u
] [} - m
.M 8 mxvz e m o
]
3
. w m ~ ~ P-4
) o mmm mmane | umn m 2
2543 unmm X
L o] )] N gs - °
. @ mmwm W% 8
X 3 354 FH | .
A b A
.A 3 1E 3
A o (o]
: o - . A1 r
: : g g g g IR 8
: mm - i § 5 w i > mw 2
i M [T}
7| HHE mmmmmmmmmm mmmm o3| -
; 2 |33 B JUHHHHHEHEHAERAE rl|2x S
.ﬂ A N R R AR AR I
-.....v.-n ..r......- ......‘...(- rrr oy ... ..... MR PAIE TR o LR of T SR T L — < - L e T ARGy . £ e e s A * r e e oo,



I A AR AL AN AL e At et A RA DA AR S A AR AR AN S et 4 S LR AL S e e AAste 1 e 2 ACRASACSA B4 B /el et k20 ]

)

The following sections introduce the sample problem, present the two can- ,%ff
didate designs, and apply the metrics to the designs. The section closes with :iﬁf
a summary. ' e
2.4.2.1 The Experiment Controller Example LS
The example chosen is an experiment controller, first described by Men- Eﬁyj
delbaum and Madaule [Men 75], and later discussed by Chow [Cho 78]. The com- e
Puter controls a series of laboratory experiments, positioning a burette el
piston prior to each experiment, and then records and analyzes sensor data . @

A .

(e.g., determining solute concentration). A report is printed at the end of a R
series of experiments; however, the user has a switch which causes the report N
t0 be issued at intermediate points if desired. The detailed requirements for .
this system are presented in Table 12, and Figure 10 is a pictorial represen- NN
tation of the system. N

This example was selected for a variety of reasons.

L4 It illustrates a number of real-time design issues, including asynchro-
nous user interraction, and timer-driven cyclic behavior.

L There are two designs derived from the same requirements which can be
compared both subjectively and by the metrics.

] It is a complex, yet simply illustrated, example.

Each design is depicted using DARTS. Figure 11 shows the first version of
the design, labeled Design 1, and Figure 12 shows the second version, labeled
Design 2. The DARTS metric analysis of these designs is discussed in the next
section.

2.4.2.2 Metric Analysis of the Experiment Controller Designs

In this section, the results of the DARTS Halstead and McCabe metric anal-
ysis of the Experiment Contreoller Example designs are presented and discussed.

Design 1, as depicted in Figure 11, was analyzed using DARTS. Table 13
shows 1) the raw counts of operators and operands used to calculate the Hal-
stead metrics, 2) the Halstead metrics, and 3) the McCabe Cyclomatic Complexi-
ty Interval.

Design 2, as depicted in Figure 12, was also analyzed using DARTS.
Table 14 shows 1) the raw counts of operators and operands used to calculate
the Halstead metrics, 2) the Halstead metrics, and 3) the McCabe Cyclomatic
Complexity Interval.

54 Automating Software Design Metrics

’ .

[
>
r
r
[




vy f
Ay
I I-

v ]
.«
Ears

TYCTET T TNLINLNLY (WL Y. LT T TN s

Table 12. Requirements for the Experiment Controller

10.

1.

12,

13.

14.

A computer system is needed to control a series of laboratory experiments (see Figure 4-1),
A burette step motor compresses a burette piston. Each step of the motor corresponds
to a given poured vciume. Following each step an interrupt signal ig is sent to the computer.

An electric cell sensor enables the computer to measure concentrations in a tank.

Experimental data are sent to the user via a printer. When the printer has finished printing a list
of data, an interrupt signal iP is sent to the computer,

A user switch enables the user to interrupt and obtain a status report during the experiments by
emitting a signal i.

The computer system can make use of a timer to request an interrupt signal iT after a given fixed
interval.

Prior to performing the first experiment, an INITIALIZATION task is performed, followed by an
initial reading of the cell sensor and the MEASURE task.

The computer has access to a count of the number of experiments and an experiment table con-
taining instructions for each experiment (the initial definition of this table is not part of the
problem),

For each experiment, the burette controller motor is operated for a number of steps {as determined
from the experiment tabie).

Next a series of measurements is performed at fixed time intervals (as determined from the experi-
ment table}, by starting the timer, reading the sensor when the timer interrupt occurs, and per-
forming the MEASURE task. The series is terminated after a fixed number of measurements (as
determined from the experiment table).

After each measurement, if the user has sert the signal iU, the COMPUTE and LIST tasks are per-
formed, and a status report is sent to the printer,

After each experiment, it is determined whether the series of experiments is finished. 1f not,
steps 9 through 11 above are repeated. [f so, the COMPUTE and LIST tasks are performed, and
the final report is sent to the printer,

The report cannot be sent to the printer if the printer is already in use (it is delayed until the
printer is available).

While a user print request is in execution, additional user print requests are ignored,
v

On The Development, Use, and Automation of Design Metrics

- :'.ic-' _‘:-" X
N
LAY

SR
(L‘.’k‘;k&'

A
.'.P':":’.' Caa

LN AN
\."-::\‘.5‘_

2o

AR
N

T

! IRl

Ty Te et
.
s

rl
L
o

o
o
LIPS

1' '.'
[N

0

LA A X JE I I
gty Y Nl

:.I ‘, '."/‘ et \
E v

n“- ,',’ ',-' -.' .f. t‘f

.
«
B W

» :’!\t
A, 4
s

PR

>
‘l

.n""-

58

o,




%
fl{ -
MOTOR TIMER I
OUTPUT 0
. F_I 'REGISTER : o
| . .\',N
- - I 'T' ata
= |~ PR o : | 2
PISTON [ | [INTERRUPT __| T
= = b ——— REGISTER
~ iy o
BURETTE | ~_ - X
- = iy INPUT
= REGISTER
= — | USER’S SWITCH [
= ADC
\
) Y MEASURE CELL
== =ll=]| Tan

Figure 10. Experiment Controller System

For both of these designs, the minimum number of unique operands is 1l1.
This is derived from counting the input and output data items at the top of

:f\%ﬁ each design tree. This information is obtained from the data-flow tables for
:;:;q each of the designs, which appear in Appendix E. As Table 13 and Table 14
E{j,}¢ show, the important complexity metrics of Halstead's theory (length, volume,
:z&:}:j and effort), and McCabe's Cyclomatic Complexity suggest that Design 1 is less
® complex than Design 2. This agrees with a subjective assessment that a profi-
ﬁi;:; cient designer might make in comparing these designs.

Ay

NS

:J-".fl.-:

R P 2.5 DESIGN METRICS AND ADA

This section considers how Ada may Dbe used as a design representation
medium during the design phase, and how the Halstead metrics may be measured

56 Automating Software Design Metrics

Vo ‘." LIS
a =T, -
"':. . ':-.'.-}..'vr. .f,'\\v\.

R \-‘. -
] o St N e g
MDESES CL RN AER




0 ¥, 4 v
'_v-\rfk‘ﬂhs EA A
O

AAFLFLILE

. FOSPNIY SR
3
2
.
A r~

. 0

.

On The Development, Use, and Automation of Design Metrics

. NOLLYEINID TIV 20CT8I'Y £1 YINAO
’ TT WAONJOL 3 TIdRVS 81 §svavava
., 7T INLL SETIOULR0O (ax1d) TAULLON
. €807 J4E8 90 ALvd LDIYsdxs SRILSAS INLL-TVIE 804
4 ¥ 20vd SIIV ROIS « WD

[}
&
3
1§
3]
=
Figure 11. Experiment Controller - Design 1 (Part 1 of 3)

oo et [ I g .-.-‘....-.<. -.-.... 7 ...a.-:.

. @) 00 o e, PP v . , ‘e Y . ...-... .....

\-\-\»\. by . N [ % 4 -- .--.- A 8 ...A-....~- o ‘- h-- 6.\.’ .h’--r .f--’-.--..-.-- R -gqu-- ., R .-1-”..--.-.-’.-}. .’.n- A A \\.. -\-\-- P \‘l.'\- nt'- t\oc\‘\-‘.._ *
= = - ] - _J




.-. .-.-\.-\-.\' \h\- ’ . . < ot R A o, —.’- oy ----)!
. I RS I P A AN ; i @I Lol ®
4
1
» .
3
b
R —
) ™
2 'Y
v' o
7 £TZV o
: ')
N L
i ]
. o,
. Noae?
b ) —
] INNOAXE € 2Dvd NO o
. 8 IXx LNEROaa oa GEANLINCO [+
... ot
h 0
\ @
, SLENIEBdXE a
! WWNLL dol8 TION .
, zov " tev u
- — (2]
— U
v [o] -
A S "
g r ] @
3 . , [ TARSINI SOMIGVEY S =
s O<SONIQVEY FTIHM 8 X 0S4LLS TTIHA ‘sdils 130 oa o
, ¥y (3
<] -
. o u
! LNANIEg4XR BLEIN LwLiseng LCANIvsaxy ] ]
N INIRERD A JANSVIN EXVL NOLLIEOd SIITYLLING o a
A z @ o
! sV sY vy v v m. -.m
‘ w
e ]
.’ M s
X — 0
; v (7]
= . o
; Y &
P, ¢dXT TTIHA =] -
) o "
. - m
) 20CTALY §1 SANAO b4
, Lo g4dxs TIANVE §1 IEVAVIVA w
. HIVE 00LNO (QEX14) $FULLOTd 5
‘ T E5Vd NOBA CEONLLROO SWILEAS ENLL~TVEE WOd <
2 30vd v oaIV ROISHC o IO
2 €= i

58

;.[If. . . ,. v e e Amea-
PPN ISERILAENES AL W AR ' : LAAALTRENE 3. 3. Y S S O

N - . - LA . N h .
IAAAL \s.............. @yl e A AAR \ﬁv... .”a.n..\.........r\.“r.




" A AT A0
J @ e YA N e )
.T,..........\..m...._v_ ® LA XA
*\ P Tl T T LS By 'y el

hd [ ‘~ LI
RENC TN XN, AR PSRN AN O

59
-
Y
.

. ‘_. bR

i e St 3

L e~

-
'y

~ -

L S le

On The Development, Use, and Automation of Design Metrics

Figure ll1l. Experiment Controller - Design 1 (Part 3 of 3)

Yy eIV T SN - L S v f AN te e .- - . ... .
g 5 CS \.\d.-\.\.l.n.-L. N Ty N e % Pt et WY e N W <,
5 : . AAPAIY e O L L e O S O

r,

‘b

‘.

‘~.

“.

-.-

200TUrY €1 YINMO

) SUNAROOUd 5&..“” _n."v SEvaviva

" Tansvan SIHLSAS SNIL-TVIY 804

’ 3 ¥ova MOud ﬂau....-uﬂ SAIV ROISIC o MO

’ ZEETI=Y

’

Ny
\. X

’ N
[ R "

’ * E

L




WAL AL

T T TS SS,

LR G & LA o A KA

'

A .,
CEY

MR S SR S RGN

» 395vd RO € 35vd NO
GANNLLROO GENNLLNGD

v ubdES ()

.

AN

P AR
B ) s s . .'-......... R .

B - RV ‘7
b L 4t w) YA

2 39vd MO

osoNIavEd 41

Te=y

20CTUY S1 YANMO

SQIV RIS . G0

Figure 12. Experiment Controller - Design 2 (Part 1 of 5)

.- '. ‘. psxtv
AN aNAN @

Automating Software Design Metrics

60

-Dlnllunvn

a 2

- .
CORTN
TSI

OO

Yo
505

e
It

~
™

\':\
h 3%

e
-' o
i




o L ] N =1
@ - 5 SN @ 2Ol
CNASAIND .

PP AR

MMM S g

14
‘.

L. v

Ll it

(it

e Bna g iy 34

v
«-t- s

R Sai

LR A

Ll G aig o

A AL SN

e -

S S B A Bt

'

aLiFunga LiGRIgadXY
TN JAvis aw SITIVLLIN]
* - .

ENNLIROO
zv v
SNLLLSYLE 41
20CTACY §1 HINAO
dxs miN TIANVE €1 Ssvaviva
%0 ENILISHLL (02X1d) XWALIONd
SNAISAS SNIL-TVEE 80d
. SUIV ROIN o 'XISO
TrET2=Y =
. S

S @

YRR ! N3 I s N

PR o LR M IR | A P R

61

Mea

A

Y

‘.‘h’

Lot

v et

On The Development, Use, and Automation of Design Metrics

Figure 12. Experiment Controller - Design 2 (Part 2 of 5)

-

Y

o,
',

<

?,
C4

-
>

(58

)

-.::N *

]
A

IR S S I L P AL T PR e et et ol



‘ 4

< 50v4d NO

w

Sl

A

R

LRLSAN

AT T

I"'i"

<L

L FONAAA g Ok

L P

»

?-v G 8-ty

278 2 a4 A

SAIV OIS

[}
P,

L/

Ve ]

¥|

Ql \I
OO0

Figure 12. Experiment Controller - Design 2 (Part 3 of 5)

Automating Software Design Metrics

62

jof, 7 lnl e




%, e

» .- ~ v . 1 ,-\ y
‘nnd -~ f-t--.v ® -...--.-..v.-\-\ . Nhr*f A\}- ® -.-.-\- s 5 S

DI i P anorons: M0
EAEATS d A A
- ....\\ - .n.~.~-.\--.- o v -v Ly

[ BT AR E oS .t PARRFL BV PPN P A A .\.\.\.\.\....\. RPN PRI S M LA

TrorTery

aEhtatag)

63

T

T TTeTTY
L T R T R

w
N et e

.

DA Al o

PO A i Aar 0 S A

o TR WL

‘~‘ .

AR

PN

20CTACY 61 HENMO
TTANVYE 61 Ssvaviva

On The Development, Use, and Automation of Design Metrics

SOIV NOISID « 2080

A A
Figure 12. Experiment Controller - Design 2 (Part 4 of 5)

T €,

A

ALBA GL St NN

2l
a

A

) fet (LA M D N
-.-'l‘lll-

-

R %Y

<

LR N U NN N

IR | v...
I N. \.-..\. .\\.-n.-uaﬂ\&L .

A
-l*\"'i
3.7%.

NN,
ol
2 ; «,

. P
LhAN
$"5\

TR
:\

W e ~-
NG &,
b

AR
R TN,

Al
L
YA

340%¢

o}

L
»

A

\‘:: .,
L -~
W

L
-
~

L X

Y
)

P




tf Ty W o T, LA AR AN A A A Sl Mg SR ol YR T L e W R e SS TR O A TN TR TR T

DESIGN AlDS

Figure 12. Experiment Controller - Design 2 (Part 5 of §)

v,

v .

ﬂ’lfl’l ’
',..l

“‘."‘."l
a 8 &

ol

64 Automating Software Design Metrics

&
el
Vs “*
L

T -5 & A
AR

(]

Ld
Cls

T Ao

A I R TN My\'}mﬂu.




. P
-.-..\-\.-.-\-.. .
b-hl

o' ‘. o,

..‘.*‘\.sﬁ PE AL

g

b

3 0
3 0
-..

g p
i :
~. r
: 2| ||| -]
z %3 | § g% | Ef p
¥ 4 3| ES o
--. c&“‘. S ESNND =N el et A ettt “ I.m“ ﬂ
f. ~ mm.. f mm.. Wm n n m
3 5 [T Lal=lelalals|s]slalalzlelels sl i f
3 n - 3 Bl8lal<|s]|<lsls]els]s °
a @ s, '1g ~ & m 8 m =
5 gl .2 § B : THINE
N ] Mu 1 L -] e
g > § |23 AR AT T § m
S AR AR NINE
wﬂ. (] m 8 "we - J“ 3 ﬁ .m
¥ 0 mumm mmmm ;
5 g HE h
v.. .M.- mlfl -t = “
= |B33H . H R
- a 2 )
a m m p o <] @
§ s |38 5 £ls| |3 1 5|19 &
& 3 |3k, ; HH af mw P
- F |l {HHIREHRBEAHHE R ;
b’ [ m W M M [] m a .m M m £
? “uww i m 2| HHETHRHLE -1
. 2|4 g m m m m

: fed3) Bl§. BlEIEE2 161518 |8 I8 8 E E 8 IEIE Glnsd | B|E[[FE

3

.

.

p

.




r. FERTTTET y N WO v ™

oy b Ay Ay Aa R . \ \ By ;\i. ) dy Ay f N SO 5% )

A 4 N 0 5 . h N \ . L \ -I L

c .* J.\. w-.... 4 ..W. ol \-.\ ‘W\.lh\ Py .\ M. .\r-\-r- .- s ‘u*s .. ..- s % -.--- b .

) ¢ et Lt el e LA R AN [ S -...-.-a DR v.ﬂc.n.tnﬁ.% A,
.. . g Agi
1 . ik
", ey,
3 Rk

Y
"
4

v
-

T
Y
LAY,

-
-

o

»

AnAN

R

Tty -
WA NP

-
S
n

~
M

LIk

Pl
Y

. PN
g X
ix ! - - ]
< mm mm 42
. % |3 %5 | B
b 1 RO eI Mot MMttt e Nt rtrtrine | £ P-4
- yEg ¥ mw -1 -
. 3
y ik “[afs|e|=|o)z(2 4| |e|a]a|5{a]2 (s | §
qly gl<[|s|8]<[~|5]¢
M e n m ™ ™
] ( mm '
NIRRT TR T §
m M ‘ w ° ™
]

| e
§

Table 14. DARTS Metrics Summary - Design 2

DPERIMEINT CONTROLLER 2
TOTAL FOR SUBSYSTEM

|esTouren erroar
(o - e

SSTIMATED OESION LEVEL
CONTENT
LEveL
ESTIMATED LANGUAGE LEVEL

{pISTDECT cPeraTORS
=

TOTAL OPERATORS
ToTaL

sencENT OFF
DESTEN

DESION LEVEL

s A

- Automating Software Design Metrics

66

.i.ﬂﬂaeﬁq
?ﬂﬁsx\ﬁ




A

a
P

- @rs

L
Y Ui

atet,
st

from such a design. First, to what extent the information necessary to the
products of the design phase may be expressed in Ada is examined. Then, a
counting method and guidelines for measuring the Halstead metrics from an Ada
design are proposed. This method is illustrated with an example, and some of
the issues raised are discussed.

2.5.1 Motivation

As Ada compilers and Programming Support Env. ~nments are nearing avail-
ability for use on actual projects, there is much interest in using Ada,
itself, as a design representation medium. This is appealing, because it pro-
vides an orderly, evolutionary way to progress from architectural design
through detailed design to full implementation. It is appropriate, because
the language provides the means for defining objects and operations which are
not primitive in Ada, through type, variable, function, procedure, and task
declarations; the means for hiding information about the implementation of the
objects and operations through packages and private types; and the means for
delaying implementation decisions through separate compilation of package spe-
cifications and bodies. Thus, a design can be expressed in Ada at any desired
level of abstraction; and characteristics such as interface correctness and
data typing consistency can be checked through use of the compiler, at any
stage of the process.

Objections which have been raised to using Ada as a design representation
medium center on the difficulty of restraining designers from premature intro-
duction of implementation detail, and the need, during design, for information
which is not best represented in Ada. Subsets and supersets of Ada have been
proposed to solve these problems.

2.5.2 The Object-Oriented Design Methodology

To make effective use of Ada as the design representation medium, a design
method must be employed which allows easy introduction of detail as design
decisions are made, but discourages the premature introduction of detail which
might unduly constrain the implementation. One such method is the object-or-
iented design methodology explicated in [Boo 83). It is used here to demon-
strate the use of Ada as a design medium and is summarized in the following
steps ([Boo 83] p. 70):

1. Define the problem.

2. Develop an informal strategy for solving the problem. State the prob-
lem solution in English.

3. Formalize the strategy by

On The Development, Use, and Automation of Design Metrics 67

LR ~

R

\. -u - - ‘.n" !"‘l l‘...\.l...l
N T T

CALN
[}

ooy

-
\.\ ()
N

AL




M LIRS LA 28 ) i ad e TWTWY Aa 01 v . v e v
MR RN NANE AL A0 g it A A R A A I A A A A AR A DA A e DAt S T A/ S A Wil A A A o sl A s st A A S g )

"":-"). 4

[ l',

.

LY
PP ' d

a. Identifying the objects used in the solution, and their attributes.

.
ll.

.
L

b. Identifying the operations which are performed on the objects Aur-
ing the solution.

c. Establishing the interfaces among the object-operation groups.
d. Implementing the objects and operations.

This last step defines a new problem, so all the steps may be repeated at suc-
cessively greater levels of detail, until a code-to design is reached.

This method is also consistent with expression of the design using DARTS,
since DARTS supports hierarchical decomposition.

2.5.3 Using Ada as a PDL with the Object~Oriented Design Method

Ada's information hiding, data abstraction, and strong typing capabilities
make it very suitable for expressing a design which is developed according to
the object-oriented design methodology, or another top-down, stepwise refine-
ment method. The objects become constants or variables of appropriate
user-defined data types, or tasks; the operations become procedures, func-
tions, task entries, or exceptions; the object-operation groups, which are
abstract data types, become packages. The interfaces among the dgroups are
defined by the package specifications and with clauses, and are controlled by
the compiler interface and type checking. Ada's capability for separating a
subprogram specification and body supports top-down design methods by allowing
an abstract data type to be referred to once its interface is specified, v
before it is actually implemented. In addition, Ada provides means for
expressing relationships among objects and operations which are not found in
many design languages. These include the ability to specify parallel process-
ing, asynchronous data exchange, interrupts, exceptions, and machine-dependent
items.

. -
N

7

i‘.'.{-'-'-ll' "
R

‘1

Ada by itself, however, is not ideal for representing all of the informa-
tion which is needed dAuring design. Table 15 and Table 16 indicate how the
information in each paragraph of the MIL-STD-SDS ([poD 82]) design documents
can be represented in Ada. The paragraph numbers are taken from the associ-
ated Data Item Descriptions (DIDs) ([DoD 82] R-DID-110 and R-DID-111).

M
’

-ﬁ; As these tables show, much of the information called for in the documents
;{;- can only be represented in Ada as comments. In general, this information
-@ falls into two classes: that which describes constraints or properties of the
??: software which are not directly reflected in its textual content, such as exe-
L{- cution time, memory size, or data rates; and that which requires reference to
I

I*N‘

" 68 Automating Software Design Metrics




TR T et T M T e TN T T T A T T T

R asacaton o

Table 15. MIL-STD SDS Top Level Design Document Information in Ada.

Paragraph number

Means of representation in Ada

[
B

Pl o
sfe
s

i

LYY

.
']
‘s
.

]
0
0

3.5.1

3.5.2

3.6.all
4' 5' 7-9

10

Comments, subprogram name.

Comments.

Comments.

Comments.

Comments.

Package specifications and comments.
Comments, or by describing the hardware
with a package specification.

Package specification with comments for
data rates.

Comments.

Task entry specifications and bodies,
exception specifications, handlers,
representation specifications.

Comments, real-time control statements
(e.g. DELAY), PRIORITY pragma.

Package and representation specifications.
Comments, real-time statements.
Subprogram specification.

Comments.

Comments, subprogram specification.
Subprogram specification, comments.
Subprogram specification, comments,

type and interface checking.

Exception specifications and handlers,
representation specifications, comments.
Package specification, representation
specifications, comments.

Package specifications, type definitions,
variable declarations, constraints,
representation specifications.

Package specifications, type definitions,
variable declarations, constraints,
representation specifications, comments.
Package specifications, representation
specifications, comments.

Intentionally left blank in DIDs.
Comments.

Appendices - not applicable.

DTN TR A A,
A AT N

On The Development, Use, and Automation of Design Metrics

v

.

L
o
.

_f‘_’_‘..
A,l‘J ./ .’
e Tty

P}
e

'

v
A S hE A
REele
o0




N ‘e ]
-

)

DO
AR

e
Y )

ST P
el
»
X/
e

[/

a
-

.......

-,

Table 16. MIL-STD SDS Detailed Design Document Information in Ada.

Paragraph number Means of representation in Ada

Comments.

Comments, package specification.

Comments.

Comments.

Subprogram specifications, comments.
Subprogram specifications. :
Comments, subprogram specifications.
Comments.

Subprogram specifications, bodies, comments.
Comments.

Subprogram specification, declaration part
of body.

Subprogram specification.

Subprogram specification, WITH and USE
clauses, comments.
WITH and USE clauses,
Comments.

Comments, subprogram specification, body.
Subprogram specification, WITH and USE
clauses, subprogram body, comments.
Comments.

Task entry specifications and bodies,
exception specifications, handlers,
representation specifications, comments.
Representation specifications, comments.
Comments, real-time statements.

Package specifications, type definitions,
variable declarations, constraints,
representation specifications, comments.
Package specifications, type definitions,
variable declarations, constraints,
representation specifications, comments.
Subprogram body.

Comments.

Representation specifications, comments.
Intentionally left blank in DIDs.
Comments.

Appendices - not applicable.

* 0
N -

.
]
[
[

WWwWwwwwwwN =
*

.

< g

*
HHHHRHR
.
N )
1 ]

L)
W W wN -

.
w w
.

W w
L] L[]
e
(S

L ]
e e

comments.

o
L]

o
L]

W W ww
.
wwww

L] .
< g q g

.
N -
N

»
b

o
xnw
"

W w
[ ]

70 Automating Software Design Metrics
A TSRS ERE LG R TA A L S U o A R O I, L T T N W TS TR AN
R A N N Sy e o T e I i I
I - * ~ p '.-‘ - R .‘-. » : Tt} o ".'.-‘A“ .'. --'-. » .' Te aa ettt Y ‘.
\"\ '..’\".-\" o\ \ ~ -‘ ‘ h ¥, \‘.1 1..\ \ w‘ o’ RO, " "\"‘ SR \-(\. il Ay Ca .‘\q " - o P,

[ ".“" T‘ f. ;
1' I{ e_?
[ 4
L% Y4 %

[}
a_. l,
'-"r

(l
A

Jok:

-
»
a

" ','
LA
'
"’l'_'d'

L4

Y-

> -
P e
’
.

s



St sYeTeNR L h - - - T
LAY
-"..'v
*.'L,
:-. S
- --\
e
:{jé the project information structure outside the software, such as requirements
::: allocation to components, or references to design analyses. Supersets of Ada,
o such as Byron ([Gor 83]), teamed with a key concept of the APSE requirements,
l* a unified database for the whole software development process, will do much to
AN alleviate these problems.
O
) q‘
::: Another issue which determines how effective Ada is as a design represen-
-{3‘ tation medium is what tools and processing are available for turning the
g information in the medium into the form which is suitable for the purposes of
&7) - the user. Since Ada is primarily a programming language, we tend to think of
L it as input to a compiler. Other tools may use it as input for other pur-

poses, such as generation of documents, flowcharts, variable or module cross-—
reference 1lists, data dictionaries, or hierarchical control trees. The
utility of Ada as a design medium, then, depends on the analysis capabilities
of a compiler and any other tools that may be used for processing the design
representation, as well as the expressive power of the language. In partic-

L4 .
e

u"'.'o’w’

};ﬁ ular, a tool to measure metrics might prove useful.
-"-:
e 2.5.3.1 Architectural Design
1.' Using the object-oriented design method, the architectural design begins
- with the exXxpression of the informal problem solution in English. Once the
T objects, operations, and their interfaces are defined, they may be specified
:E: in the top level Ada representation. This usually takes the form of a package
o specification for each group of objects and operations which is used in the
:r: problem solution, and a subprogram specification for the solution itself.
( i Preliminary design ends when enough iterations through the method have been P
Sy made so that the hierarchy, control, and data interfaces ([Boe 8l1] p. 48) for 2o
::ﬁ all components have been defined to the level of a preexisting software compo- Q&:}
o nent, or a subprogram which "performs a single well-defined function, can be rﬁﬁj
e developed by one person, and is typically 100 to 300 source instructions in [~:)
ﬂé size" ([Boe 81] p. 49). As design progresses, the bodies of the packages are bﬁ}q
) filled in with control structures which use new, lower level, objects and f?ir
v operations. These are specified in new packages. The body for the solution a*?‘
» o subprogram is also filled in to show how the most abstract object-operation =~
'}ﬁ groups are used. A
- A
gﬁ{ The first design problem in [Boo 83] is used, in the following section, as i&\‘
o a sample for demonstrating the application of the Halstead metrics. It com- °
T prises a subroutine for counting the leaves on a binary tree. The English T
{f{ language statement of the informal problem solution ([Boo 83] p. 72) (the AN
- informal architectural design specification) is reproduced in Figure 13 at the :juj
Rf end of this section. Figure 14 reproduces the initial package specifications :1§a
:} for the counting leaves problem from [Boo 83)], pp. 76-77, and Figure 15 -}V'
X reproduces the solution algorithm {[Boo 83] p. 78) which uses these packages ’ﬁi
i{i as primitives. Together they constitute the architectural design for the =<
D problem. Q‘:
.l Pl . l- L)
g RO
- LAY
G On The Development, Use, and Automation of Design Metrics 71 }g}'
2. L
Ny N
::: :;:;i
3 S
- ONE
A AP AL AT :.- > '.r,:.r P PR _:.r CLUN R A A A I A A A A T P A SR RO AT AL AL A ‘.L
3 N -.;'3?;3*-.*1-"\'-'-"{j"-t;t*i-'-. o NN A A e s e



2.5.3.2 Detailed Design

During detailed design, the algorithms for implementing the objects and
operations specified in the last level of architectural design are developed
in terms of objects and operations which are not visible outside the subpro-
gram which implements them. This may require further type, object and opera-
tion definitions, but they are logically local: the problem solution does not
use them directly, even though they may be part of a library of commonly
available packages. There will tend to be a larger proportion of native Ada
constructs and low level utility routines used than in the subprograms devel-

- e, O KRR, -
U, TR ‘Y -
C (R LRI
. . . M M ]
R [N

.

Treery

a’a
v

s e
e . 2
[ T
. P W

:;f~ oped Auring architectural design. Here, decisions such as the data structure
::‘ for local variables, or the oqrder of operations necessary to meet accuracy
ﬁ-, requirements are made. '

v
x
.

¢
4 - .
B
. A
" * T
. el

Figure 16 shows the full detailed design for the counting leaves problem.
The private parts of the initial package specifications have been filled in,
and the bodies have been written. The external specification for another
package, FIFO_PACKAGE, has been introduced, because it is used in the imple-
.. mentation of the TREE PACKAGE. It is assumed to be a preexisting package, so
S its body is not given here. The solution statement has not changed from that
given in the architectural design, so it is not repeated.

)

AR
s el

v,
Y

N
O,
2.5.4 Using Halstead Metrics on Ada AR
( \!- -

oy
The Halstead metrics may be applied at several stages during the design ,:;ﬂ
>y

development: The informal English statement ¢of the problem solution may be @
measured following the techniques in [Hal 77] Chapter 13 ([Hal 77] pp. 98-110) B
(this is explained with the example in a 1later section), and the design }:-:

expressed in Ada may be measured using the method described in the following
section, at any stage of the design or coding phases.

-
L)

&

e v
P AP
. P

WA Sa
The metrics may be used to provide a way to judge which of several differ- i ]
ent solution strategies is simpler, based on the objects and operations in W

which it is stated; to estimate planning parameters from the architectural ARy

..

design; and to provide a reasonableness check on the quality of the design as ;};
it evolves. Since the design is expressed in actual Ada code, the same met- ;i;
rics may be applied to the code as it evolves, to monitor complexity as chang- e

es are made. The measurements for the architectural design can also be @
compared with those for the English solution statement to discourage premature
implementation decisions.

KA

AR
.

2.5.4.1 The Counting Method

A design expressed in Ada can be viewed in two ways: as an expression of
a problem solution in terms of a language invented for the occasion, compris-

o

- © hf ’
y 72 Automating Software Design Metrics
s
0
w3
o
o
] v,
YOI

* _:-f .: -cn" A% ...“:q.\'-.%

RRRANS Ny e

.. - WAL
N S G SRS o nA




ing the objects and operations needed for the solution; or as an implementa-
tion of that solution in the language Ada. In the first case, the objects and
operations developed during design are viewed as if they had always existed,
and had been part of the designer's vocabulary. The language the designer is
speaking is not Ada, but an sxtremely specific one which solves the problem,
but cannot express anything else.

This might be the more useful point of view for comparing competing .
designs for conciseness as abstract solutions. The second case, however, is a -
more accurate representation of what actually happens during the design proc-
ess: the designer invents the objects and operations with which to express
the solution. This corresponds to using the Ada constructs which create
types, variables, and subprograms. It is proposed here as the point of view
more likely to lead to a serviceable method of using the Halstead metrics for
comparing designs as practical solutions, and for predicting planning parame-
ters.

o i

Accordingly, in the method proposed below, lexical elements in Ada are
designated as operators or operands in accordance with how the they function
from the point of view of the person who is writing in the langquage Ada, giv-
ing directions to an abstract machine which will create and manipulate the i
objects specified. As design progresses, the abstract machine becomes parti- L
cularized as the real machine. N

.
8"

This point of view has other benefits: It allows all the code available .

to be included in the measurements at any stage, so complicated provisos are AR
not necessary for different levels of detail. It allows different strategies - 6
to be devised for selecting portions of the the design to be measured to tai- RN
lor the method for a particular use of the metrics, such as predicting plan- e
ning parameters. It allows ‘the same method to be used throughout the design 0y
and coding phases and it is consistent with earlier efforts at measuring the ;(jx
Halstead metrics in high level languages. ?:::
2.5.4.1.1 IDENTIFYING OPERATORS AND OPERANDS ::!E

With this philosophy, the entities which are operations in the object-or- ﬁf}i
iented design statements are usually Halstead operands of Ada keywords which S
are Halstead operators. For example, a procedure or task entry call will be a ROt

verb phrase in the solution statement. In Ada, its declaration is viewed as a
command to create a procedure or entry and make accessible its name and
external interface. The operator is the implicit "create" represented by the
reserved word procedure or entry and the operand is the procedure/entry name.
The invocation of the procedure or entry is viewed as a "call" or "invoke"
operator with the procedure/entry name as its operand. Similarly, the
reserved words type and package are further particularizations of the general
"create" operand, with the type and package names as operands.

c‘h’

On The Development, Use, and Automation of Design Metrics 73

.

‘-. e \'.

AR C et
L S DRI A DY ~e

AP ANY VS, .-,'_'l AL LN A



A
P f‘:;‘ ot

Pt
AR

)

e

2 e .
IR
2

* 4

2.

LA N e e Ju "t
l’I .'/ ‘l .I 'I "4
L A A e
AP Y

1
'

-

Dl i

{ﬁﬂf
XA I

+

4
o "

.
L

S
’

SRS RSERERE LA E LRGN NC AR I R Aot o e

< LA

The following method, based on the generalized identification and counting

technique of Section 2.2.3.2 is proposed for identifying Halstead operators
and operands:

l. Comments are ignored.
2. Pragmas and declarations are included.
3. The following are counted as operators:

All delimiters, including compound delimiters (e.g., ">=", "..").
For paired grouping symbols, such as "(* and ")", each pair is one
operator.

All reserved words.
4. The following are counted as operands:

All literals, including numeric literals, character 1literals (in-
side the "'"s), and string literals (inside the """g).

All other identifiers which are not reserved words in the context
in which they are used. These include type names, formal parameter
names, package names, function names, procedure names, task names,
entry names, and exception names.

Note that since Ada allows the same name to refer to different entities,
through scope changes and overloading, care must be taken to treat distinct
entities as distinct operators and operands.

2.5.4.2 Possible Adjustments to the Counting Method

The counting metnod proposed above has been used on the simple examples in
the following section, but it has not been verified by application to a sta-
tistically significant number of design problems and correlation with desired
end products, such as estimates for development cost. When such data is col-
lected, the counting method might need to be adjusted to perform better as a
predictor of cost or yardstick of quality. This section lists some areas whe-
re the counting method might be adjusted.

The method used here is based on an expression of the design in pure Ada.
If a superset is used, the new design language constructs will have to be
included in the counting method. 1In particular, if Byron were used, the Ada
comments which are Byron statements would need to be included in the metric
determination, since the Byron statements are Ada comments. The Byron key-
words and other constructs would need to be integrated with the counting for
the Ada constructs. -

74 Automating Software Design Metrics

ANy
b‘ " l.-f " "
.

»
SR A

»
m .
-

LA =) ':“{.'v-.'- AR O
r': 'I. '1(""". ': '){". ’ '..

s 1

Pt

,
@i

#

”O":.
LT

AR
l’..l-.‘ 'y

»
.

-' (' A' --..

v
s L

SR

»
[ W A




AR B R v e v v
A Pl - MO A At P DA SACMACMA I § kAt J e A AW 2 g PR S i ) oxh MM i 2 n a0
. - - - B - - . i A - . - - -t . B - .t

The philosophy for dividing operators and operands might need to be recon-
sidered, especially in the areas of types, declaration versus use of items,
task objects, generics, formal parameters, and renaming. [Els 78] Aiscusses
some of these issues in the context of PL/I.

Use of the use clause lets the designer use objects and operations from
other packages without having to specify the full package and entity name in
each reference. A design written this way will have lower total operator and,
especially, operand counts. Fully qualified names might be a better
reflection of the amount of effort expended Dby the designer. A metric evalu-
ation tool using an APSE database would be able to resolve references to
external packages, and compensate for the use of the use clause in the design.

2.5.4.3 Automation Potential

Automatic collection of the Halstead metric data from an Ada represen-
tation of a design is clearly feasible. It does, however, require a tool as
complex as the syntactic and semantic analysis portions of a compiler, since
the design is subject to the same potential ambiguities that a program is.
Other problems may arise if the design language is a superset of Ada. For
example, a superset might allow inclusion of free-~form text as a significant

4
part of the design. Such a tool would best be incorporated as part of an {iﬁ:}:
APSE, since the central database provides a natural means for tracking pro- :"25;;
gress and monitoring quality as the development takes place. :xf\$4ﬁ

Frene
2.5.4.4 Example o et

The first design problem in [Boo 83], counting the leaves on a binary
tree, is used here as a sample for demonstrating the application of the Hal-
stead metrics. The English language solution statement (the informal archi-
tectural design specification), the Ada architectural design specification,
and the Ada detailed design specification are given in the figures which fol-
low the discussion.

According to Halstead [Hal 77] Chapter 13, the software science parameters
may be measured from the English solution statement by counting as operators
the "function words" given in Table 13.1 ([Hal 77] p. 100), punctuation, cap-

f italization, paragraphing, and numbers with one significant digit; and as AR

A operands all other words. The results of applying this counting methcd to the o

- English statement of the informal problem solution for the counting leaves }::‘i
; . pronlem are given in Table 17 and Table 18. ijr:::
" NI
F Halstead also discusses adjusting for the redundancy usual in natural lan- H:«i%}
- guage, which comes about through using synonyms to make the prose style more ST

interesting. He proposes that all distinct character patterns should be
counted as distinct operators or operands and then the numbers for distinct
H operators and operands should be reduced by a factor to allow for synonyms and

' On The Development, Use, and Automation of Design Metrics 75

AT N
.*.\.-\.{".-“ A
.~ '\f'- *

AL L
SRS X o
ek S




variant forms, such as plurals. He proposes 0.4 as a reasonable factor, and .
uses the difference between the estimated and actual lengths to substantiate y.i{
this choice. Table 19 shows the values for the metrics with this adjustment e

f..",_"__"..'..' ' B o

»
-

P P N N
y N e e
P,
.

-4

made to the number of distinct operators and operands in Table 18. In this
case, picking the factor to make the estimated length agree with the actual
length of 132 gives a value of 0.554 for the factor. The metric values
obtained by using this factor are also shown in Table 19.

Table 20 lists the operators and operands for the architectural level of
the Ada design for the same problem, obtained by using the counting method
defined in the previous section. Table 21 4gives the Halstead metric values
for the architectural design. Table 22 and Table 23 contain the operators,
operands, and metric values for the detailed Ada design. In each of these
figures, the information is shown for each major component of the system, as
well as the system as a whole. That is, the COUNTER_PACKAGE, PILE PACKAGE,
TREE_PACKAGE, and the main procedure numbers are shown for the architectural
design in the columns labelled CP, PP, TP, and main, respectively. The
detailed design figures include, in addition, a column labelled FP, for the
FIFO_PACKAGE.

2.5.4.5 Analysis of the Counting Leaves Example

This example shows that the Halstead metrics may be measured from an aAda
design representation, but the utility of the data as a predicting and con-
trolling tool remains to be verified on more, larger samples. As may be seen
from the figures, the metric values increase with the addition of detail to
the design, as expected. The correspondence between the program length esti-
mator and the program length metric als¢o improves with additional detail. It
is likely that the metrics can be used to compare alternate designs, as long
as they are compared at the same level of detail.

The Halstead metrics will favor the design which is expressed using fewer
objects and operations, since they effectively correspond to the operands and
operators counted in determining the Halstead measures. This encourages the
designer to think about, and express, the solution in terms which are high
level, as close as possible to the level of the problem statement, rather than
in terms of the primitives of the system upon which it will be implemented.
There is some evidence that the object-oriented design method encourages this
kind of design, in that the estimated language levels for the architectural
design are larger than those for the detailed design, and the estimated lan-
guage level for the main subprogram is larger than those for the supporting
packages. '

Possibly, sets of metric values for components at different levels of
detail could be used to develop a characteristic profile for how the values
change as design progresses. The profile might then be used as a guideline
for estimating development cost parameters for new modules, or for setting

76 Automating Software Design Metrics




M bounds on a reasonable growth rate for the metrics during the design process.

LS
e Any module which exhibited an out-of-bounds growth rate would be suspect. The
t profile might depend on following a particular design method, such as the
& object-oriented method, in which the changes from level to level are well
e defined and constrained.
«.‘ J
A
iy
10 Keep a pile of the parts of the tree that have not yet been
counted. Initially, get a tree and put it on the empty pile; ;!
the count of the leaves is initially set to zero. As long as .z-:;q
the pile is not empty, repeatedly take a tree off the pile and _"_;ﬁ
examine it. If the tree consis of a single leaf, then 23]
increment the leaf counter and throw away that tree. If the N ;
tree is not a single leaf but instead consists of two subtrees O
\ Split the tree into its left and right subtrees and put them O
:-}_} back on the pile. Once the pile is empty, display the count -_'\._'-_‘fﬂ
K of the leaves. Eogy
oY PY L
_(\_- 'J..'_‘:.‘
"*.f; IS¢
;“ Figure 13. English Language Problem Statement for Counting Leaves Lh ]
-9
.ﬂ'_ B '.':P.'.]
S . .r?'J
K red
3
. . 9
P ':;~:: ':::)‘;:.
’ A
)
K NEAE
PR oA
S} S
. AN
AN
o SN
Lo \'.’;-:‘
Wt T
2= ;‘“-:J
o [
: e
. R
: Rty
. ‘\..:
L
::'::-
'.‘.' On The Development, Use, and Automation of Design Metrics 77
L
A
.':\‘
.:_s:
-
%
7 ::_-.:.s: ;'.}\}:- ‘{'::'?:':}:}:"M :’:ﬁl"-\ LRI ’-"_; ._','\-':':':':':;':':':{';-Q':-.:\':\js;-\-":\:-.-.:;\::--:,'-:\:.\:_‘,:\')-:,:;:' ::-"':r::-\:-' 'x:,-\».
O s, < - AN '\‘_‘ .'_'-._'-- I LA RS \..' "'-.'_-"‘--‘_.-'.--'.. [T _’-'!n .n-‘.b -"‘._
2 v . e e L T L o N e N A D RN M e N



‘l ")"..

i

[N

PO

:i%::

KA
il
:.:.’:,xl
package COUNTER_PACKAGE is A
type COUNTER_TYPE is limited private; -
procedure DISPLAY (COUNTER : in COUNTER_TYPE); I
procedure INCREMENT (COUNTER : in out COUNTER_TYPE);: o
procedure ZERO (COUNTER : out COUNTER_TYPE); o

private

end COUNTER_PACKAGE;

with TREE PACKAGE;
package PILE_PACKAGE is
type PILE_TYPE is limited private;
function IS_NOT_EMPTY (PILE : in PILE_TYPE)
return BOOLEAN;
procedure PUT (TREE : in out TREE_PACKAGE.TREE_TYPE;
ON : in out PILE_TYPE);
procedure PUT_INITIAL (TREE : in out TREE_PACKAGE.TREE_TYPE;
ON : in out PILE _TYPE) ;
procedure TAKE (TREE : out TREE _PACKAGE.TREE_TYPE;
OFF : in out PILE_TYPE),

~ES

private iﬁﬁ*
... ol
end PILE_PACKAGE; F:*:
t-:‘-::'\-

package TREE PACKAGE is \._-:4

type TREE_TYPE is private; P
procedure GET_INITIAL (TREE : out TREE_TYPE); OIS
function IS_SINGLE_LEAF (TREE : in TREE_TYPE)

return BOOLEAN;
procedure SPLIT (TREE : in out TREE_TYPE;
LEFT_INTO : out TREE_TYPE;
RIGHT_INTO: out TREE_TYPE):
procedure THROW_AWAY (TREE : in out TREE_TYPE);
private

end TREE_PACKAGE;

Figure 14. Ada Architectural Design Specification for Counting Leaves.

‘4

e
e

v,
.l.l’-
fa o Y
®
L]

2%

o
I~

!

78 Automating Software Design Metrics

N
¢
Y

A A I N i
3 4 - I. lq J' Sa vk f -

- - - \ ‘ -.-. .-‘..i.._..‘..\ - .
N R R TUTI o

‘~-




ADSARARARARS AL A AL S AAAS SN AASASATA M SAN NS AEACANM SO P IA 4 4 1 CAE R A AT L e 0/ AR e ™ e -

"
'#.'
ST

L

J‘
i

" [;r"
A
+

with COUNTER_PACKAGE, PILE_PACKAGE, TREE_PACKAGE;
use COUNTER_PACKAGE, PILE_PACKAGE, TREE_PACKAGE;
procedure COUNT_LEAVES_ON BINARY TREE is

LEAF_COUNT : COUNTER_TYPE;

LEFT_SUBTREE : TREE_TYPE;

PILE ¢+ PILE TYPE;

RIGHT_SUBTREE : TREE_TYPE;

TREE : TREE_TYPE;
begin

GET_INITIAL(TREE);
PUT_INITIAL(TREE, ON => PILE);
ZERO (LEAF_COUNT) ;
while IS_NOT_EMPTY (PILE);

loop

TAKE (TREE, OFF => PILE); R

if IS_SINGLE_LEAF (TREE) then Nl

INCREMENT (LEAF_COUNT) ; o,

THROW_AWAY (TREE) ; RS
else -
SPLIT (TREE, -

LEFT_INTO => LEFT SUBTREE, A

RIGHT INTO => RIGHT SUBTREE); NN

PUT (LEFT_SUBTREE, ON => PILE); o

PUT(RIGHT_SUBTREE, ON => PILE); Qi

end if;
end loop;
DISPLAY (LEAF_COUNT);
end COUNT_LEAVES_ON_BINARY_ TREE;

¥ of I 2 7.

Figure 15. Ada Solution Statement for Counting Leaves.

o
S
:_\
o
~@.
._\
™
@ On The Development, Use, and Automation of Design Metrics 79
2 FRE.
O e nh
,, -)‘ .'i
e . f‘
. o -
l'i h‘i‘\#
. EA'S:
. NN ;‘

o
. - e tm et e - .o W
BT LG Sh ARSI St .3\...\_5\"‘ :\
S T e,
RIS YR 9L S \"\‘,\_\"‘\.‘ Y
o

.
»! s [




Jabhbiab b N A O EAL L S EL P SL LIS AR A AT SRR RARA AT ML N S o s RER AR Y ey ak A il Al LAl o Tt i AR A |

package COUNTER_PACKAGE is
type COUNTER_TYPE is limited private;
procedure DISPLAY (COUNTER : in COUNTER_TYPE);
procedure INCREMENT (COUNTER : in out COUNTER_TYPE);
procedure ZERO (COUNTER : out COUNTER_TYPE);
private
type COUNTER_TYPE is NATURAL;
end COUNTER_PACKAGE;

with TEXT_10;
package body COUNTER_PACKAGE is

procedure DISPLAY (COUNTER : in COUNTER_TYPE) is

package COUNTER_IO is new TEXT_IO.INTEGER_IO(COUNTER_TYPE);
begin

COUNTER_I0.PUT (COUNTER) ;
end DISPLAY:;

procedure INCREMENT (COUNTER : in out COUNTER_TYPE) is

begin L St
COUNTER := COUNTER + 1; AN

end INCREMENT; . N
procedure ZERO (COUNTER : out COUNTER TYPE) is R
begin P
COUNTER := 0; NI,

end ZERO; S
end COUNTER_PACKAGE; TR
SRR

Figure 16. Ada Detailed Design for counting Leaves - e
COUNTER_PACKAGE. (Part 1 of 8) -9

AR AL
>

‘l

LY

< s e
L S D i R B

" "'

».
’.
-ﬂ
-4
- 80 Automating Software Design Metrics
N
v,
\J
td
L
’LJ
h
[\
S oY
N A I P A T A A TP T N AT P e e '.::::"{"
NG AL AN SRR SLSANE S RERA PESEAL WL R M EOAN
$ Lol .'N-‘_(_‘. D AL A ot EARS Al J'\J'\.\

L SCHRE LAY S0 N S S S S AN ' w
2 G2, 0 A0 20 AN N RS LT SR e (RS



v ARSI A BARRS AL At A LA A S e A R A R et s R il e S et et s It e i Uit i A ATt «
P -
. el
-.. C-' -.--
- .
) S
D s
‘N D
.‘ ... - 4-‘ -
S R
<
- with FIFO_PACKAGE; e

t with TREE_PACKAGE;

package PILE_PACKAGE 1is o
AR type PILE_TYPE is limited private; AR
A function IS_NOT_EMPTY (PILE : in PILE_TYPE) )

o return BOOLEAN; A
procedure PUT (TREE : in out TREE_PACKAGE.TREE_TYPE; LN

O] ON : in out PILE_TYPE);
o procedure PUT_INITIAL (TREE : in out TREE_PACKAGE.TREE_TYPE;
T ON : in out PILE_TYPE);

NN
."’n "‘.4'

WY s
At
2
L]

o procedure TAKE (TREE : out TREE_PACKAGE.TREE_TYPE; )
o OFF : in out PILE_TYPE); o

o private
( package TREE QUEUE is new FIFO_PACKAGE(TREE_TYPE);

-9
-3 type PILE_TYPE is TREE_QUEUE.QUEUE_TYPE; o
£ end PILE_PACKAGE; ]
--.:. .:_'_'.:-'
T Figure 16. Ada Detailed Design for Counting Leaves - PILE PACKAGE. (Part :i}j
..‘ i 2 of 8) .,.A‘,’
'h", :‘;:’.. _
%8 SR
o RO
8 s

A
7

o~
. [}
Y Ry

0
Dt ‘.
3 Y
h" }".;n"t
L Al o "5
- 1]
LA Lo
- PN
7 -
a2 v
- NN
.t ok
TR
A A S
- AR
s, : ~:"
- "' ~ .‘.-

,".h' *

g 4, .

N R
LS
‘.‘

2 2

)
g

»

" .'i . 4

S
. . r

L]
.
> s

YAl L

On The Development, Use, and Automa;ion of Design Metrics ¢ 81

o -l)
I.‘

ata e a e,

»
. * 4

o~
o
<
¢

v
» 1a®s

T R e A R R R S N L R
g o LR TR R
-_..\"-\'_._“\ },'.. '-:": LR TN ._.‘ o o

- ROV L L AL ' .
T AN A e T .‘-‘\q. » \J wis 8 N . Y
o e '-LA‘L\\\.\':‘A.\Q!\:J':}& k\’- WL Y N



-

with TREE_QUEUE;
package body PILE_PACKAGE is

function IS_NOT_EMPTY (PILE : in PILE_TYPE)
return BOOLEAN is
begin
return not TREE_QUEUE.IS_EMPTY (PILE);
end IS_NOT_EMPTY;

procedure PUT (TREE : in out TREE_PACKAGE.TREE_TYPE;
ON : in out PILE TYPE) is
begin
TREE_QUEUE.APPEND (ELEMENT => TREE, TO => ON);
end PUT;

procedure PUT_INITIAL (TREE : in out TREE_PACKAGE.TREE_TYPE;
ON : in out PILE_TYPE)
renames PUT;

*e

procedure TAKE (TREE : out TREE_PACKAGE.TREE_TYPE;
OFF : in out PILE_TYPE) is
begin
TREE_QUEUE.TAKE (ELEMENT => TREE, OFF => OFF);
end TAKE;

end PILE PACKAGE; ?E
o

Figure 16. Ada Detailed Design for Counting Leaves - PILE PACKAGE. {Part Fn»
3 of 8) o

T
LR

82 Automating Software Design Metrics

3

QLS CRORLY Oy ":?g Y, VO AT LS R o G R e S S L R R S S N LS C O L S TR EA RN R L S TC L, <

N A A e R i
- y T ) { - L") o a™ A A e . - oy

LY f, 0% R aN . KA MM N i a0 2N YN, A N "'\ l.c,p X 0 W \ o .. WL mm



T " 5 T o IR At v LA ALI AN

AR o LR S A ko e pA A e SR A A A A A A S AN, el o A 3 A p
“:' . ~ - . - e W . - ' . . .%o N et . - -_':.:':\.i
w0 RSN
h: \'_'0-..‘.4
. ARJOREN
= RO
A RPN
- D0
package TREE_PACKAGE is Lt
type TREE_TYPE is private; -
o procedure GET_INITIAL (TREE : out TREE_TYPE); NP
S8 function IS_SINGLE_LEAF (TREE : in TREE_TYPE) KO0y
~ return BOOLEAN; el
- procedure SPLIT (TREE : in out TREE_TYPE; Y
LEFT_INTO :  out TREE_TYPE; - :
- RIGHT INTO: out TREE_TYPE); r
. procedure THROW_AWAY (TREE : in out TREE_TYPE); NN
s private RSy
. type NODE; e
type TREE_TYPE is access NODE; L
{ type NODE_VALUE_TYPE is STRING(1l..10); °
x type NODE is X
e record A
o LEFT : TREE_TYPE; . IR
\: VALUE : NODE_VALUE_TYPE; A0S
RIGHT : TREE_TYPE; . A
[ end record; ®
- end TREE_PACKAGE; o
S — S
W RGN
e Figure 16. Ada Detailed Design for Counting Leaves - TREE_PACKAGE. (Part o
N 4 of 8) R
o s
"' . S )
- N
‘ .
\‘J
.
<
\-
[
-:"
v“N
K
e
..['
e
e
=
¢
3
\. -
X
>
e on The Development, Use, and Automation of Design Metrics 83
-
a
.
)
N

i YA

iy

f-"
SN
o



Jas, LTSS A AP TR AT TR T e T " o R b ‘_ET_'-?'_‘:' - _‘ _‘j:.':'_'_:.?'}_‘_ . .' Y -'.H.'_b .'_ L) _' R3 _' "-.'_'i vE .'.- e

with DIRECT_IO;
package body TREE PACKAGE is

procedure GET_INITIAL (TREE : out TREE_TYPE) is
-~— Assume that the tree information is in a direct
-- access file. Each record consists of the information
—— for one node of the tree, consisting of the value for
== the node, the file index of the top node of the left
-=- subtree, and the file index of the top node of the
-- right subtree, in that order.
-= The file index for the subtree will be zero
-- if the node is a leaf.
-- The topnode for the entire tree is in record 1l.

type TREE RECORD_TYPE;
package TREE_IO is new DIRECT_IO(TREE_RECORD_TYPE);
type TREE_RECORD_TYPE is
record
VALUE : NODE_VALUE_TYPE;
LEFT_INDEX : TREE_IO.POSITIVE_COUNT;
RIGHT_INDEX: TREE_IO.POSITIVE_COUNT;
end record;

TREE_RECORD: TREE RECORD_TYPE;
DATA_FILE : TREE_IO.FILE_TYPE;
with TREE_IO; .

procedure GET_SUBTREE (TREE : out TREE_TYPE;
RECORD_INDEX: in TREE_IO.POSITIVE_COUNT;

FILE + in TREE_IO.FILE_TYPE;
TREE_RECORD : in out TREE_RECORD_TYPE
) is
Figure 16. Ada Detailed Design for Counting Leaves - TREE_PACKAGE. (Part
5 of 8B)
. -7.
' :(.:
N
. e
. N
g ’. - -16
S 84  Automating Software Design Metrics
WA
H
:;;,
'.
N
LK
h‘:\'
B R T TR € A LR AL S ~
S AT RN
v e o i

. a
S N L S PO AR S S S S S
S A A L'.-L'. L\.l.'..L L\UL‘&_{L'..L“._I.I 1} 1".\'



v

e

Ly
.
.,
e

o

>
A.\l

(%

r‘l.l‘v\v
e

W e A

N

»

-

.
E s AR
LN S N WU R

>
L

-

LA AN

4

y _.I ." v‘l '.! ..'

begin
if RECORD_INDEX = TREE_IO.POSITIVE_COUNT(0)
then
null;
else
TREE_IO.READ(FILE, ITEM => TREE_RECORD,
FROM => RECORD_INDEX);
TREE := new NODE' (LEFT => null,
VALUE => TREE_RECORD.VALUE,
RIGHT => null);
GET_SUBTREE(TREE => TREE.LEFT,
RECORD_INDEX => TREE_RECORD.LEFT_INDEX,
FILE => FILE,
TREE_RECORD => TREE_RECORD) ;
GET_SUBTREE(TREE => TREE.RIGHT,
RECORD_INDEX => TREE_RECORD.RIGHT_ INDEX,
FILE => FILE,
TREE_RECORD => TREE_RECORD) ;

end if;
end GET_SUBTREE;

begin
TREE_IOC.OPEN (DATA_FILE,
MODE => IN_FILE,
NAME => "put in implementation detail here”,
FORM => "Put in implementation detail here");
GET_SUBTREE (TREE => TREE,
RECORD_INDEX => TREE_IO0.POSITIVE_COUNT(1l),
FILE => DATA FILE,
TREE_RECORD => TREE_RECORD) ;
TREE_IO.CLOSE (DATA_FILE);
exception
-=- Fill in exception processing during implementation.
when DATA_ERROR =>
null;

Figure 16. Ada Detailed Design for Counting Leaves - TREE_PACKAGE. (Part
6 of 8)

On The Development, Use, and Automation of Design Metrics 85

. - . - . - .. -..~. . LI ...c_-.: - -, . - . - v a UL T P e
T . \e:{.... e

.... . .u‘ ~.:~.A .¢.; A.:.- :.l .
AL EGERCRL SR SR C TS O S N



H
+

PN
7
5 l"u' 'A' 'f P
2 fa et

when DEVICE_ERROR =>
null;

when END_ERROR =>
null;

when NAME ERROR =>
null;

when STATUS_ERROR =>
null;

when USE_ERROR =>
null;

end GET_INITIAL;

function IS_SINGLE_LEAF (TREE : in TREE_TYPE)

return BOOLEAN is
begin

return (TREE.LEFT = null) and (TREE.RIGHT = null);
end IS_SINGLE_LEAF;

procedure SPLIT (TREE : in out TREE_TYPE;
LEFT_INTO : out TREE TYPE;
RIGHT_INTO: out TREE_TYPE) is
begin
LEFT_INTO := TREE.LEFT;
RIGHT_INTO := TREE.RIGHT;
THROW_AWAY (TREE) ;
end SPLIT;

procedure THROW_AWAY (TREE : in out TREE_TYPE) is

begin
-~ Assume that deallocation and garbage collection are
-- done by the system.
TREE := null;

end THROW_AWAY;

end TREE_PACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves - TREE_PACKAGE.

86

7 of 8)

Automating Software Design Metrics

(Part

'y Y
L

»

v
Ll

.
i

Tl
Py o
A J:.

2

b

Al A

)
AR

("l‘.l".r o«
PR
Yy

7 ¥
gy

Pl
s ‘e
LA
Py )

v

»

AL,
»
Lot P SN




ST A i 3o 10 FE T A R RAIR S i i e e e

.‘\v
o, -
o

et o
VAt B

" generic

_* type QUEUE_ELEMENT_VALUE_TYPE is private;
s: package FIFO_PACKAGE is

ja type QUEUE_TYPE is limited private;

i: EMPTY_QUEUE: constant QUEUE_TYPE;

:-;- function "=" (QUEUEl: in QUEUE_TYPE;

QUEUE2: in QUEUE_TYPE)

—~

return BOOLEAN;

v function IS_EMPTY (QUEUE : in QUEUE_TYPE)

- return BOOLEAN;

o procedure APPEND (ELEMENT: in QUEUE_ELEMENT VALUE_TYPE;
= TO : in out QUEUE_TYPE);

procedure TAKE (ELEMENT: out QUEUE_ELEMENT_VALUE_TYPE;

A OFF : in out QUEUE_TYPE);

2} private

N type QUEUE_ELEMENT TYPE;

N type QUEUE_TYPE is access QUEUE_ELEMENT TYPE;

type QUEUE_ELEMENT_TYPE is
record
VALUE: QUEUE_ELEMENT VALUE TYPE;
REST : QUEUE_TYPE;
end record;
end FIFO_PACKAGE;

v »
MO i
S0, 'u_t'n‘. .,

( Figure 16. Ada Detailed Design for Counting Leaves - FIFO_PACKAGE. (Part o
}',‘ 8 of 8) T
B
'_ t_: *_\‘q
- e
. RNy
- .\.
; :h’:\ "7
. '-:.ﬁ’. .
-: '_--‘ :-:' K
::‘ .::\f*:
- e
-, '—'?'.‘-\'
v, ;_.‘:.3..
L °
o o
.. . ‘_-. )
. <. ..l-‘.\
'-. -~ .-.1.'.l
- ..-"- -'p‘
ey
’. R
-, e
‘ [
. .
L~ HCSICR
L
\l '.\".q_'.'
r.. ey
4 " ...-'.\ '.l
. NG
N ST
q Dl
& On The Development, Use, and Automation of Design Metrics 87 —_
. SRS
" WS
. -.‘,-..';s'
- - 1
e ha N -\
- LSy Uy -.:
. wON
i 55&%
d"v LOARE S A AR TR LN LTI ZE LT ARSI A e . . . N . C.‘~:,\:':'
5\-"\"\,,'-"-."- RSP LS .-:'«':‘.-.? I AR VN TN A "."’:""
F NIk AR L ISR .'-‘_\ ¥ . A S SIS WA .
) \ .‘J'\-"\l’ ..f\.l'\t" L) o, Ty N CR R \("." ‘_." .'-j‘;'-¢\ '\."" ORI _‘-'.\' e '.\' ~
S —— : - lale A s Vatatats !’Li‘;'(Ll. %



AD-A145 869

UNCLASSIFIED

AUTOMATING SOFTWARE DESIGN HETRICS(U) CHRRLES STARK
DRAPER LAB INC CAMBRIDGE MA EWSKI ET AL.
FEB 84 CSDL-R-1662 RADC-TR- 84 2? FZBSBZ -82- CF013g/2




) .
" h.l .

.
[

KEREREPY LN

a2

l2-8 2.5

o

B2 mz.z
m E ]
L mz 0

s

I e

TEREEERE

—
.
—
Er

r

fr

N
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A




Table 17. Operators and Operands in English Statement for Counting Leaves

HALSTEAD METRIC

[BoO 83] DESIGN PROBLEM ONE - ENGLISH

OPERATORS

COUNT

OPERANDS

COUNT

<paragraph>
<upper case>

but
get
its
not
the
two
yet
awvay
been
have
into
keep
once
that
them
then
zZero
right
instead

HEFFRPHENFHEPRERERHEERPUWORFEFRFEAOFRPNGONBNNUDREOOGOOGNK

off

put

set

back

leaf

left

long

pile

take

tree
count
empty
parts
split
throw
leaves
single
counted
counter
display
examine
consists
subtrees
increment
initially
repeatedly

HFNFNNMNHEFFEFRFRFPONNEFRFFRFONDIRORREWHERNDPR

33

@
Y

26

48

Automating Software Design Metrics

AN
e Y

SRS ARL SRS
oAl atnTy

S I TR e Y
OO

Pl

At e ta vy

L I s
.\ _'.f\'
LN
LYARLY
"."'.::\,
- '\ Ll
RN
'- "'.- }- d
oW
- -
LR

LLllE




._.\ "
At s
-,
\5
.-"‘
-\ -
A
::: Table 18. Halstead Metric Values for English Statement for Counting
jxi Leaves
>3
16
-s
N HALSTEAD METRIC (BOO 83) DESIGN PROBLEM ONE - ENGLISH
N
3
-y DISTINCT OPERATORS 33
it DISTINCT OPERANDS 26
"
AN
s TOTAL OPERATORS 84
- .r:
~ N TOTAL OPERANDS 48
- VOCABULARY 59
- .’
-\.(\
2N DESIGN LENGTH 132
A ESTIMATED LENGTH 289
R PERCENT OFF -119
b DESIGN VOLUME 777
PRy POTENTIAL VOLUME 26
s ESTIMATED DESIGN LEVEL 0.03
{Ij INTELLIGENCE CONTENT 25
ted
“\
G ESTIMATED LANGUAGE LEVEL 0.8
o ESTIMATED EFFORT 23,654
~‘J
:.4l4
o
ORI
L
b
.o

- .. 'l
L _LRRIAIEINL Mok

% NN

DI o P N e R S e N P L. ]
N Nt L e ) A
AR o AN IR

s - '
L B
% Y -.'\ l"o

¢t

On The Dl2:velopment, Use, and Automation of Design Metrics

89

T
L

RS I
SO
AN
’ ." .A‘.J.'J 'JL

fl

LM M

[
S

o" l.' . -.: Ve
'r"i’ NS X

WLl
[d L)

‘ i

YYTE B,y e v
- I..l,'.l.."."'::"l
/7 ’l, l",‘

.

o




)
aae 4

s
a

.,l
.’l,

PR
ot

Ll

Table 19.

Redundancy

Halstead Metric Values

for English Statement Adjusted for

HALSTEAD METRIC

(BOO 83]) DESIGN PROBLEM ONE - ENGLISH

Redundancy factor = 0.4 0.554
DISTINCT OPERATORS 13.2 18.3
DISTINCT OPERANDS 10.4 14.4
TOTAL OPERATORS 84 84
TOTAL OPERANDS 48 48
VOCABULARY 23.6 32.7
DESIGN LENGTH 132 132
ESTIMATED LENGTH 84 132
PERCENT OFF 36 -0.1
DESIGN VOLUME 602 664
POTENTIAL VOLUME 20 22
ESTIMATED DESIGN LEVEL 0.03 0.03
INTELLIGENCE CONTENT 20 22
ESTIMATED LANGUAGE LEVEL 0.6 0.7
ESTIMATED EFFORT 18,338 20,256

90

Automating Software Design Metrics

BRI A
"
R

“\ .

LV ]
"‘.’

LA A A 5 d
welsy

KX A
s

PN
F AR ﬂ - s L
[ ;:'.' AN

g
({

[

PN
o’




ST

L Al gl adh d fe g
VTt ot

IR A0

AR S ) i

IO N A

BEAT YA LN

-

A Rat & B AR
-~

-~

"N

-

]

Operators and Operands

Table 20.

in_Architectural Design for Counting

-1-0- \\

(Part 1 of 3)

Leaves.

..\\

T _a_s

s aa"s"a nls

. ® . .\ B
#............. .\\vw \\._ \....x\..

\\ .\\\\-wn-?. )

) [} g D 2y & -J)-\.t
A&kmmnbh XS XARK N VO
'l\

PLY S A AT AR N A T

-
(4}
[U]
(6]
-~
[ 93
F's )
Q
=
L] [ OMNMPOAVAAOVDANNATNNMTMTMNODONAMAHAN n m =
[] Q N <N ~t — () N @ o
[ + — -
()] (%)
s o] > Q
(8] " A
2 "
(o]
1
[ =
[ (o]
Z Nal
° T
= =] ONHOWMOWAAMONOAONOOOHAOAOMAAA [TolN)] E
V) B -~ N A ~ O o
a8 5
o 1
> 9
[+ N OT DO WOOOAH0MANODOWLANMAHO~AOOO ™ @ =1
z [3) —~m L]
v
0 o
1]
m Q. MIPOOP000A410WVWNAHOVAANMAO0OMOO0A O O (]
(@] o, —~ ~un p]
‘™ »
[+0] [+ 1 OMWOMOO0ODO 100NN HONANMOOAOOO [a Y] =
(8] N @
w E
a,
m (o]
Sl l
[
>
Q
0 (=]
14
[o] [ ]
O H W0 =
= < M 3]
04 m O
E i & =
3] Pm (o]
= (o]
(2] [+ m
[=] 14 (=} -~ [ 3]
< [o] (o] o Qw3 (S}
Q] B+ Rl [ [ NFE R o I~ =
[ m (=] + + 0o o N @ -
5] (ol ] 8] A Q. MD> O3S0 - o [ 2
=] 52 —~ [o B I o BN =1 mOtCiOteWEit (7 =
o 0. A DAL ITwWwE O A03d L L O0o 0 LA - 0O
o] (o] o~ o s Il QPOHAAAAAAOQOLDNLMSPYIITI AP
\...- -....-- AR v, - .- ....... ) -! U A AR f\.«.t)\)-\ol-\: )IJSJ\-I\-J.'. -( 3 . . e YN Y Yy . c--..
o e o e et ..¢ .......... A R . -.........y g -'..-.. o “
O e R e R @ @ e R S




ey & W VWV W
OO,

LA
l.l‘
DA

.

< .'1’1- _( _‘

_ 4 v
PR
It . R

0\ -\ a\ l\ »

'
-~

rﬁvT
R
St
eyt
e
.
*e
V%
0
B

‘ .
'!". T
P PR

Table 20. Operators
Leaves. (Part 2 of 3)

and Operands

in Architectural Design for

Counting

HALSTEAD METRIC

[Boo 83] DESIGN PROBLEM

ONE - ARCH DES

OPERANDS

Cp PP

TP

main

system

BOOLEAN

COUNT_LEAVES_ON_BINARY

_TREE
COUNTER (DISPLAY)
COUNTER ( INCREMENT)
COUNTER (ZERO)
COUNTER_PACKAGE
COUNTER_TYPE
DISPLAY
GET_INITIAL
INCREMENT
IS_NOT_EMPTY
IS_SINGLE_LEAF
LEAF_COUNT
LEFT_INTO
LEFT_SUBTREE
OFF (PP.TAKE)

ON (PUT)
ON(PUT_INITIAL)
PILE(main)
PILE(IS_NOT_ EMPTY)
PILE_PACKAGE
PILE_TYPE

PUT (PILE_PKG)
PUT_INITIAL
RIGHT_INTO

Q

OQOO0DO0O0D0D0D0DO0CO0ODO0DO0ODO0OO0OO0ODOHOKHBNEKEKHKHO

[

OHFHFUVNHFOHFFKFHFFOOOOHOOOOOODOOO

[

HOOOO0OO0OO0ODO0OOOOHOFHFOOHOOOOOOO

o

HENMNHFNOOBHNIFWHMOBHFKHRHHEHHEFENOOON

2

NN WO LFANWNWNLENNNDNNDNNOMD KFEHEFEDN

92

Automating Software Design Metrics

IS
.

.-,-
s
‘ll
.

Y
.l
Sy v-

L5
~ra,

p

e eV P
"'l .I:i 'l 'tdf

s,

L R
L4



g « . SN :l'\_ﬂ .

EAERMS

o

¢~‘

DA )‘f’ﬁ

A . -
( JEAA )‘ ,4_' ‘I.t‘

s

Fars .t' AP

3
'y .?'.‘

'.l .‘l ‘.IJ ‘.. -.u "- ,h '. , '.o .

CONE) 1 e
ALY TR

Table 20.
Leaves.

Operators

(Part 3 of 3)

and Operands

in Architectural Design for

Counting

HALSTEAD METRIC

[BoO 83) DESIGN PROBLEM

ONE - ARCH DES

OPERANDS

Cp

PP

TP

main

system

RIGHT_SUBTREE
SPLIT

TAKE (PP)
THROW_AWAY
TREE (PUT)

TREE (TAKE)

TREE(SPLIT)

TREE (main)
TREE_PACKAGE
TREE_TYPE
2ERO

TREE (PUT_INITIAL)

TREE (GET_INITIAL)
TREE (IS_SINGLE_LEAF)

TREE (THROW_AWAY)

HOOOOOOOOOOOOOO

OWPOOOOOHHHKOKHOO

ONDMNDOHEFHMHHFHOOOKROKrO

P WNJOOOOOOOKHKFRW

NWOIHHFHPEPHEEFEFDDDNDW

TOTAL OPERANDS

DISTINCT OPERANDS

o
[\ e o]

On The Development, Use, and Automation of Design Metrics

N '.\:.\..:\:. "' LM : "\' \'{:' \.‘:- ‘:f.\'-:.'! \(
Y . s S v . .\ oyt ‘e !'
yi'\_n-_._aA S SL SN ;‘.' ‘.' \‘ . '.\. J.\‘\ PN}

93

I

% 'y &

}Vé’f

‘v



A o
oL, ‘7,

e

(AORCAUNON
f‘_/.f*l.l-‘.l‘.‘ "

y .
PR 'Y

- . . ;
.

A

A
LAY
et

@A

A
I‘."l.

Id

PR B
¢ _4§ -
sl a ey,

L

(]
.
A

3
»

L_LACN A

o« 05,
s
P SR 4

LrieNs

.

Sren

APAOONAT TAKK

-
e
4

@[

SRR DAL RS EYLN  Ea

Table 21. Halstead Metric

Leaves

wta¥ "

- L P Y -

.-

Values for Architectural Design

AR RS

for Counting

HALSTEAD METRIC

[Boo 83) DESIGN PROBLEM ONE - ARCH DES

CP PP TP main systenm
DISTINCT OPERATORS 12 16 13 16 25
DISTINCT OPERANDS 8 i6 13 28 40
TOTAL OPERATORS 26 50 38 69 183
TOTAL OPERANDS 12 26 20 54 112
VOCABULARY 20 32 26 44 65
DESIGN LENGTH 38 76 58 123 295
ESTIMATED LENGTH 67 128 96 199 328
PERCENT OFF -76 =68 -66 -61 =12
DESIGN VOLUME 164 380 273 672 1777
ESTIMATED DESIGN LEVEL 0.1 0.1 0.1 c.1 0.03
INTELLIGENCE CONTENT 18 29 27 44 51
ESTIMATED LANG LEVEL 2.0 2.2 2.7 2.8 1.5
ESTIMATED EFFORT 1478 4940 2726 10360 62181‘;

94

Automating Software Design Metrics

‘

“
[ ]

L
¢
l&'

.




Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 1 of 6) . :

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - DET DES

OPERATORS CP PP TP main FP system

0 1
0 2
10 19
12 23
25 55
2 16
24
0]

1
3
31
59

._l

HOKFOMPOOOOMOOHWOONOOOOKFOMNOWMWONODO

28

'—l
NS
[§)]
O

o

w

(relational)
=(fcn name)

"f'" I'A.

=>

2
'.l [

N
W

T

access
and

begin
body
constant
else

end
exception
function
generic
if
in

is
limited
loop

new

P
4

[=3

.*..l
b
NOONOUVUNONKFOHFHOFOKFFHMSMHO

N
S NWLHFMFOHFHFOMMEWNENOOKHWKH

9
oy
.
)

& %

$—
w W
v
s .4

"I'l"‘
[

/

OO HULVLRMROHNCNOFFOOOFHFOOOHOOOOOMMOH+HO
’

POFONOONOUMOOH WOOOMOOO
ONOKFFONOOOWKHOOHOOOOMROOODO

MY

red

1

l.l
(Y3

1
1
)

r'.‘.(' v
L )
E)

S ]
v Wi
. o

‘1'_'1_.-“-(', .
,{r". [ 4
3
R L]

v
7

1

v

0
.

.

£ L

Ccn The Development, Use, and Automation of Design Metrics 95

a2
.

., o,

l‘
AN

o 4, e
{*I~

2
"f

ST T e
L .




Table 22. Operators

SRR N AL SRR RS L LAN AL AL S0 A et At gt it

and Operands in Detailed Design for

Leaves. (Part 2 of 6)

AN S DA M i M BBk AL 24 B B DA SRS

Counting

HALSTEAD METRIC

[BOO 83] DESIGN PROBLEM ONE - DET DES

OPERATORS (033 PP TP main FP system
not 0 1 0 ol o 1
null (statement) o} o] 7 o] o] 7
null (access value) 0 0 5 0 o] 5
out 4 12 12 o] 3 31
package 3 3 3 0 1 10
private 2 2 2 (o] 3 9
procedure 6 6 7 I 2 22
record 0 0 4 0 2 6
renames 0 1 0] 0 0 1
return 0 3 3 0 2 8
then 8] o] 1 1 0] 2
type 2 2 6 0 5 15
use 0 0 0 1l 0 1
when 0 0 6 0] 0 6
while 0 0 0 1 0 1
with 1l 3 2 1 o] 7
DISTINCT OPERATORS 19 23 35 16 20 45
TOTAL OPERATORS 7% 133 |279 69 69 625

." t" o .

2,

< 96

Automating Software Design Metrics

o L ey
AP AU AT S A

d'_ - ..' ‘-'tn" ‘;. X '\J' ‘-
NI v o ) G

i~

Lo A

-~ ~_..'-- '_- ARG SRR Sy LS W " Y Y g -
e i Vs OSSR ORE t 8 ": _;u._.b'. A AT
- e

oy

ASHANSL AL

U ~.'-‘~-

-‘:.l T ¥
s >

LAY
l‘

N
“ .
s

1y



".""_" ._"-".- CC -2 -t - - Pl PR A A, DAL & AN " EiMag et el 1~ T . -
St o
S .
N A
S A
Table 22. Operators anad Operands in Detailed Design for Counting :.,-"._*
:’\, Leaves. (Part 3 of 6) r"\":
N DG
(¢
el HALSTEAD METRIC (BocO 83] DESIGN PROBLEM ONE - DET DES
o OPERANDS CP PP TP main FP  system
), APPEND 0 1 0 0 1 2 Py
w3 BOOLEAN 0 2 2 4] 2 6 N
waN CLOSE 0 0 1 0 0 1 RS
209 COUNT_LEAVES ON_ Ny
S BINARY_TREE 0 0 0 2 0 2 R
) COUNTER (DISPLAY) 3 0 0 0 0 3 i:-;{.
COUNTER ( INCREMENT) 4 0 0 0 0 4 °
. COUNTER (ZERO) 3 0 0 0 0 3 3
o COUNTER_10 2 0 0 0 o 2 X
bC COUNTER_PACKAGE 4 0 0 2 0 6 M
AN COUNTER_TYPE 9 0 0 1 0 10 RSN
>0 DATA_ERROR 0 0 1 0 0 1 L
t DATA_FILE 0 0 41" o0 0 4
N DEVICE_ERROR 0 0 1 0 0 1
N DIRECT_IO 0 0 2 0 0 2
DISPLAY 3 0 0 1 0 4
o ELEMENT (TC.APPEND) o| 1 0 0 1 2
{ ) ELEMENT (TQ. TAKE) 0 1 0 0 1 2
- EMPTY_ QUEUE 0 0 0 0 1 1 e g
" END_ERROR 0 0 1 0 0 1 A
v FIFO_PACKAGE o] 2| o 0| 2 4 O
- FILE o o] 7 o| o 7 b
N FILE_TYPE 0 2 0 0 0 2 o
' FORM o| o| 1 o| o 1 am
FROM 0 0 1 0 0 1 A0
o GET_INITIAL o| o 3 1| o 4 .
iy GET_SUBTREE 0 0 5 0 0 5 -
< IN_FILE 0 0 1 0 0 1 .
- INCREMENT 3 0 0 1 0 4 N
[ INTEGER_IO 1 0 0 0 0 1 . .
i :
‘.:: .
.\‘ hS
\. >
3 6*-! ® N

I l.
RSN

l' .‘l 'l .l ‘l

On The Development, Use, and Automation of Design Metrics 97

L

oo
LS AT

l"‘
B
e we

1@

M
-.‘;w-. .-,o‘-._\-’.. PR P
A Q\-“a ~N$ .\ i) \ .T‘I‘ h

»!

v,

Y Ll ‘e . - -
SN

ATATLIESA RS
DS O R AT

roey

»
-

0




N« . ... . ..\q\ .
) *ﬁ'n- A SN .-.-h-ﬂ-.A 4@ e ,.-
P : - \\\\\ \\\-\\..
u-mWM‘- . ..r. . ' ...A-~v-¥p [T e s ...

Counting

for

[BoO 83] DESIGN PROBLEM ONE -~ DET DES

Detailed Design

=
-

Operands

and
(Part 4 of 6)

OFF (PP.TAKE)

PUT (PILE_PKG)
PUT (COUNTER_I0)

Operators
PUT INITIAL

Leaves.

LEFT_INTO
LEFT_SUBTREE
NATURAL
PILE_TYPE
POSITIVE_COUNT

Automating Software Design Metrics

IS NOT EMPTY

IS SINGLE LEAF

ITEM
PILE(IS NOT ENMPTY)

HALSTEAD METRIC
OPERANDS

IS EMPTY
LEAF_COUNT
LEFT_INDEX

NAME ERROR

NODE VALUE TYPE
OFF (TQ.TAKE) .
OFF (FIFO.TAKE)
ON(PUT_INITIAL)
PILE{CLOBT)
PILE PACKAGE

Table 22.

as

i J . « v PR P .
“' \\\s et AP IR N @ SR " SeTas ol e, ATRIC o
....s.@\.s...: - S . BOE L IRE AR ey ...\................ss......L




o S
_::-::: Table 22. Operators and Operands in Detailed Design for Counting
A Leaves. (Part 5 of 6)
) =s
( - . 'r”
- HALSTEAD METRIC (800 83] DESIGN PROBLEM ONE -~ DET DES -c‘q
« . '-b "".
. OPERANDS CP PP TP main FP system l::::.:;
s o
" QUEUE1 ol o| o ol 1 1 A
QUEUE2 0 0 0 0 1 1 ..
2 QUEUE_ELEMENT_ N
o VALUE_TYPE 0 0 0 0 4 4 N
o0 QUEUE_ELEMENT TYPE o 0 0 0 3 3 :Z;::.:;:
QUEUE_TYPE 0 1 0 0 9 10 N
] READ 0 0 1 0 0 1 Y
e RECORD_INDEX 0 0 6 0 0 6 e
e REST 0 0 0 0 1 1 ::4.;
N7 RIGHT 0 0| 5 o| o 5 PR
RIGHT INDEX 0 0 2 0 0 2 HhYS
o RIGHT INTO 0 0 3 1 0 4 e d
o RIGHT SUBTREE 0 0 0 3 0 3 @
o SPLIT o| o 3 1| o 4 s
255 STATUS_ERROR 0 0 1 0 0 1 o
o STRING 0 0 1 0 0 1 Lo
A5 TAKE (PP) 0 3 0 1 0 4 A
O TAKE (TQ) 0 1 0 0 0 1 AR
{ TAKE (FIFO) o o 0 0 1 1 . @
s TEXT_I0 2 0 0 0 0 2 o
s - Cu”
THROW_AWAY 0 0 4 1 0 5 NN
S TO (APPEND) 0 1 0 0 1 2 R
T TREE (PUT) 0 3 0 0 0 3 DN
s TREE (PUT_INITIAL) 0 2 0 0 0 2 s
2 TREE (TAKE) o| 3] o o| o 3 -9
v TREE (GET_INITIAL) 0 0 3 0 0 3 A
e TREE (GET_SUBTREE) 0 0 7 0 0 7 A
b TREE(IS_SINGLE_LEAF) 0 0 4 0 0 4 il
- TREE (SPLIT) 0 0 5 0 0 5 e
. TREE (THROW_AWAY) 0 o] 3 ol o 3 .
= A
.\‘.
~@
\..r:
)
-~
A
%
:ﬁ: On The Development, Use, and Automation of Design Metrics 99
L 2
-
.-.\
...\

. '.'.'.'H_' .

[N]

3




Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 6 of 6)

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - DET DES )
OPERANDS Ccp PP TP main Fp system
TREE (mainproc) 0 0 0 7 o] 7
TREE_IO 0 0| 12 0 0 12
TREE_PACKAGE 0 7 4 2 0 13 .
TREE_RECORD_TYPE 0 0 5 0 0 5
TREE_RECORD
(GET_INITIAL) 0 0 2 0 0 2
TREE_RECORD )
(GET_SUBTREE) 0 0|10 o o 10 >
TREE_QUEUE 0 6 0 0 0 6 ~
TREE_TYPE of| 7|17 3| o 27 o
USE_ERROR 0 0 1 0 0 1 o
VALUE(FIFO) 0 0 0 0 1 1 -
VALUE (NODE) 0 0 2 0 0 2
VALUE o
(TREE_RECORD_ TYPE) 0 0 2 0 0 2 ;"_ -
ZERO 3 0 0 1 0 4
0 1 0 i 0 o) 2 e
1 1 o) 2 0 0 3 "“3
10 0 0 1 0 0 1 FrEd
Put in implementation ;:‘_‘.
detail here 0 0 2 0 0 2 N
f_'-..::%
DISTINCT OPERANDS 15 | 27 | 52 28 | 18 105 g
TOTAL OPERANDS 41 | 79 |169 54 | 33 376 -,
i S
100 Automating Software Design Metrics

O NN A
x*.'.x's'_‘.‘-.;

L} . -
LS S N
A AT L T T

T R T P By
AR .‘v" AR LN
el ‘_\‘.. .,\(\}_5



‘u
*

P‘ ’

Al

}.

\j Table 23. Halstead Metric Values for Detailed Design for Counting Leaves

oY

L

T

t

o HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - DET DES
AN

-_“\

::.j~ Cp PP TP main FP system

*Q* DISTINCT OPERATORS 19 23 35 16 20 45

5] h

T DISTINCT OPERANDS 15 27 52 28 18 105

o
h s TOTAL OPERATORS 75 133 279 69 69 625

=) TOTAL OPERANDS 41 79 169 54 33 376
L .9
» VOCABULARY 34 50 87 44 38 150 RO
) e
¥ iy '.\...'.
s:f DESIGN LENGTH 116 212 448 123 102 1001 s
AN TN
;- ESTIMATED LENGTH 139 232 476 199 161 952 A
jﬁ PERCENT OFF -20 -10 -5 -61 -58 5 ;i
.~_‘, - v-n.
o DESIGN VOLUME 590 1196 2886 672 535 7236 -
("' ESTIMATED DESIGN LEVEL 0.04 0.03 0.02 0.06 0.05 0.01

< INTELLIGENCE CONTENT 23 36 51 44 29 90

L ] .

od ESTIMATED LANG LEVEL 0.9 1.1 0.9 2.8 1.6 1.1

N
) ESTIMATED EFFORT 62181 40260 164166 10360 9814 583018

o

Y
E’
._.~

On The Development, Use, and Automation of Design Metrics 101

1 @.

102 BIAVK

[ ata )
LAY
»
LY
Pl I )

e
2 ‘s ™




3.0 USING DESIGN METRICS, A SUPPORTING METHODOLOGY
L ]

This section outlines a methodology, consistent with the RADC software
quality framework, for using design-aid tools and design metrics. It
envisions a situation in which such tools and metrics are part of an inte-
grated software engineering environment which is used to support all phases of
software development. Using this approach, it is possible to

l. Evaluate competing software designs,
2. Estimate software project planning parameters,

3. Monitor software product quality.

Previous sections of this report have described and illustrated various ?:3
software design media, and have shown how metrics can be defined for measuring P
certain software quality criteria. In particular, the CSDL tool DARTS was p‘
introduced and used to illustrate the automatic generation of McCabe and Hal- fﬁ#
stead metrics based on the information in a DARTS design database. An example :
, was also given of the use of an Ada PDL as a design medium, and Halstead met- )
ot rics were extracted in a similar fashion. Both the Halstead and McCabe met- c}ﬁj;‘
:j- rics provide a means for assessing the complexity (or inversely, simplicity) :ﬁ}};
) of competing designs. The Halstead metric is also capable of indicating con- R
j' ciseness of a design, as discussed previously. :ﬁ:ﬁ:

4

v
.
.

This section begins with the definition of a method for projecting project
costs and schedules based on metric data taken during the early phases of a
project. It then describes in more detail the anticipated use of design met-
rics by both software development and program office personnel.

3.1 PROJECTING PROJECT COSTS AND SCHEDULES

To estimate costs and schedules in the early phases of a software develop-

<. ment project, one must adopt a cost estimation method, gather any needed data,
? estimate required parameters, and carry out the required computations. Boehm
E: reviews a number of cost estimation methods [Boe 81], and recommends using a

i combination of techniques including:

: °
$ 0ot
% N
<~ P e o

& _ o
L Using Design Metrics, A Supporting Methodclogy 103 ;ﬂ?ﬂ
:‘ 1S A0
~ @
NG PN
2 ROAE
2 AP
N
3 :‘ .’t ',‘-
.q e
. S
Tty T TR —a v . Sy
’x$\¢\ \'\}\¢\(\ Y 5$“’ :f:x’ SN Sy :f\ﬁni\::,
~ -~ e Y “u LHEYLRERS L Sl e Sl

il LYGIRY * s Aoyl TSGR T RN HEY




. Top-down estimates based on expert opinion and previous experience, and

s
e Bottom-up estimates (module by module) using an algorithmic model.

Although there is no substitute for expert opinion and previous experi-
ence, algorithmic models have been found increasingly useful as a base for
estimating project cost and schedule. Boehm's COCOMO model [Boe 81] is an
example of an estimation method that has been widely used and adopted by many
organizations. It has the advantage of being well documehted, and has been
validated using data collected from 63 completed projects. As an example, the
COCOMO intermediate model estimated software cost within 20 percent of project
actual cost 68 percent of the time.

3.1.1 An Algorithmic Estimation Method

Halstead presents an algorithmic estimation method which has certain
desirable features, although it has been criticized for some of its assump-
tions. It is based on two aspects of software science theory:

e The effort measure E, and its relation to programming effort, and

(4 The potential volume Vx, and the ability to infer software science met-
rics from V» and the implementation language level A .
Halstead suggests that once £ is Kknown, an estimate for the programming
effort can be obtained from:

T = E/S
where T is programming time and S is the Stroud number. Halstead used the

Stroud number as a measure of the number of elementary mental discriminations
a programmer would make per unit time. He cited the range for S as from 5 to ;

20 discriminations per second, and most commonly used 18 discriminations per >
second (in which case T is measured in seconds). This approach has been crit- A
icized recently as an incorrect application of the results of cognitive psy-~ ﬁ{%
chology studies [Cou 83], although a certain amount of empirical evidence has :fj:
been amassed in its favor. =
NS
Leta

To obtain an estimate of E for an implementation, Halstead suggests using

..t the potential volume V* and the implementation language level A . The poten-
Zﬁ tial volume V» is a measure of the volume of an algorithm in its minimal form,
}}: namely, a "built-in" function which computes the algorithm from a list of its
C{- input and output parameters. If the number of such parameters (operators) is
;ﬁ designated TN,* , then the minimal vocabulary N* is computed as

n*=2+n2*

104 Automating Software Design Metrics

: '; E : » : :I
L JAO XA

o

. R
A A SR S LS LA I S R ) AL P N AT A o N
e N N N N NI N N S SN N

ARSI AR AR SAS LS R O L
« - Pt N, » W - " »
T Py A A T, Y, T S, ) iy Ty ¢ DA P




T ~ T - wr v  aad T ~— e -~
.‘_ EOICA A A 4 S N 55 A S AT A S e i N | A AR A I A RSN A rah Sl I ARAARAA AT A It Ak A i A A A D A AR A e e o)

et RN o
-
i

. .
e
.

b

LS

St

\-r":-i

= e

where the operand count is taken as 2 to account for the name of the procedure N
and the assignment operator (or grouping symbol). The potential volume is R
0 .‘I'

computed from

V* = n* logz n*

The language level A was proposed as a parameter that would characterize
a programming language in terms of expressive power. Halstead defined it in
terms of the program level L and the volume V as

A = LV = LV*

By analyzing programs written in a number of different languages, he was able
to measure A as 1.53 for PL/1l, 1.14 for Fortran, and 0.88 for CDC assembly
language, although these values had 1large variances. Subsequent research has
failed to corroborate these results for other sets of data, and the claim for

s N
»
AR

q

RO

constancy of the language level must now be regarded as questionable [she 83]. -;31
N

Nevertheless, Halstead gives the following formula for estimating E [Hal .{ﬁ}*

77} R
i |

E = (v9) /A2 oy

1,324

In other words, by estimating A for the implementation language and by know- fj:ﬂg
ing V= from a count of the inputs and outputs of the algorithm, one can esti- e
mate E for the implementation, and then calculate T. *‘iﬂ
ASASS

In the following, it is proposed to use the potential volume and language }:{é

level in order to estimate the program length N instead of E, and thus avoid - x|

'
v

AN
o
12 o

use of the controversial Stroud number. Although a value must be selected for
the language level, it does not otherwise enter into the method and in partic-
ular does not need to be measured. The utility of the procedure must be @

Ta 1, 8,

empirically determined. A

RSN

The program length N can be directly related to length in thousands of :f:c:

delivered source instructions (KDSI), and hence estimates of cost and schedule fki\

can be derived using Boehm's COCOMO model or other models. For example, in Eﬂ?:

the basic COCOMO model - P

PN

MM = 2.4 (xDsI)!'0® RN

R 0-38 KOS
~ TDEV = 2.5 (MM) Y
-

[IAON
l'|
'.l

e 00 e

-
LI

Using Design Metrics, A Supporting Methodology 105

K
I W 3
v _ 8
OO

LRI
S Sl

Al




T AT AT AT A NS N Y T e IR, T

where MM is effort in man-months and TDEV is development ¢time in months, and
the so-callgd organic development mode is assumed (see [Boe 81]). Note that
in talking about delivered source instructions the following comments apply.

1. Delivered means any software developed with the same rigor as as a
deliverable product, e.g., software developed with reviews, test plans,
documentation, etc.

2. Source instructions exclude comments but include job ¢ontrol language,
format statements, and data declarations.

Note also that the above formulas exclude the effort required for the plans
and requirements phase, and that good management practices are assumed.

Halstead's length N may be related to KDSI as follows:

’
3

et
. o

N=axb x KDSI x 10° !
:_-.;-.
SR

where a is the ratio of executable to total source statements (since only exe- ;p?
cutable source statements are counted in Halstead's method), and b is the num- j{:n_
ber of operators and operands in one source statement. Halstead suggested f:§

using .5 for a, and for b, 7.5 for a high level language and 2.7 for assembly
language [Hal 77, Hal 78a). Using the value for a high level language, one
finds

N

S

!

Y

L) ,l
A

4

K X hh
PSS

XDSI = (2.667 x 107*) N

[
vT1 .
LI
L Y]

4 5 %

To find an estimate of the length N, one first finds the volume estimate A
using Halstead's relation (Hal 77] R
. 0%

v = (V*)°/2 o

NS

By definition, the volume is related to the length E“
.y

“" s
1

'kl. 'l
L4 "

vV = N log, (n/2)

1, &
A
Y

%

where n is the vocabulary. Employing the approximation, N, = n, = n/2 '
one has

RIS A ok o o
.t
ry
) s

W,
b

N =n 1092 n)

1

Thus for a given V= and A , one must find n such that

2,y =
£(n) = n log, (n/2) log,n - (V¥) /A =0

- Once N is found, then N is found from the preceeding formula.

0 A
i’a
f M
%'

S A
s
’
»

106 Automating Software Design Metrics

LA

P

rry
2y
”

Ty




.
- O

[
AT I

RO 'y
P A A
(RN T,

L A
PRI
% e 'y

l"‘

F 3 ’ ~ A ‘. -
e

[4

<@

‘l
e

[htd ) .
AN .‘.-.- \. S S
PR '

'y ] s e v .

LA P ] A tet AT

‘.t',

P AN

N R Y .
Col@r

L )
e

[N
4

’ .;- X ?ﬂl"‘z\;“

a8
’
.

AXC

Gaffney presents an alternative method for estimating N that has the
advantage of not involving the language level [Gaf 81], but it appears to be
of use only for relatively large modules.

One can apply this method to the design taken as a whole, but it is pref-
erable to use data from the architectural design to estimate the 1length of
each of the modules separately, and then add to get the total design length.
Thus, the technique provides initial estimates for the length (and hence the
project cost and schedule) which are refined and improved as the design pro-
ceeds. The following example will make this clearer.

3.1.2 An Example

To illustrate this method, the experiment controller example of section
2.4 will be used. The input and output data items for each node in the design
are stored in the DARTS database, so that it is a simple matter to determine
n* and hence Vx. For this example, A was taken to be 1.3, corresponding to
a high level implementation language. The data for design one are presented
in Table 24, and for design two in Table 25.

Referring to Table 24, it is seen that when the counting method was
applied to the top node in the design (component 1.l1), N was found to be 300.2
which corresponds to about 80 1lines of source code. When the method is
applied to the next 1level of the design, and the lines of code estimates are
totalled, an estimate of 110 lines of code is obtained. Similarly, when the
method is applied to three levels, the estimate is reduced to 95 1lines of
code.

Referring to Table 25, the top level estimate is the same, namely, 80
lines of code. However, the second and third level estimates are 165 and 167
lines respectively. These estimates reinforce the conclusions reached eéarli-
er, namely, that design two is more complex than design one. Furthermore,
they provide insight into the relative cost of implementing the two
approaches. The result is especially striking, since to three levels, design
two has only six components, while design one has eleven.

The estimates also enable the designer to identify the sources of complex-
ity in the design. When estimates jump from one level to the next (as with
design two), it signals an unexpectedly large increase in complexity. The
designer can then identify the modules which most contribute to the complexi-
ty, and determine if improvements can be made. .

A final point worth mentioning is that this technique depends on being
able to determine n* and hence V»* for designs and design components. In par-
ticular, if data item names represent ahstractions for complicated structures,
the number of unique operands needs to be appropriatedly increased. This can

Using Design Metrics, A Supporting Methodology 107

-
»
¢

e

« %
’
..'.‘
'

e "..." ’

.
a

Y TR
..
4 AN
L ] -_v' 'y
OO I .

o

S
.«
PR
. .
- LR
a a R

A
a0

e
"'".’5 -l. 'l.
'.. "' '1.

A"
P
o &2, Ay

[y

4

)
24
()

RNALT

Ly 4y o

4 - g
. 8"
(ALY
Y

..

-

) "uf N I
2 a4 I..|"-.'
f .

&7

1' r 5 e_r
XA A
41.-'1".'

@rreey

‘. rl'l'l
e v
s f ) .

" F v 2
N

1
3,

\:,f.{_
crr
s 7
l.l'l

R
Yy

"
o

P AR

ey
e % %

‘*‘5"". *
el

4y, .

L
-

by ‘-{‘--. .,

27




LA AN DA S0 S A At i BRI O A A A e e 4 A B i S SR e N, o

BB AR AACHA B BA SR A ekl Ak Aimad s At i s o )

Table 24. Length Estimates for Design One

Component n* v* n N KDS1I Z KDS1
1.1 13 48.106 60.9 300.2 0.080 0.080
1.1.1 3 4.755 5.24 7.3 0.002 0.110
1.1.2 5 11.610 11.6 29.3 0.008

1.1.3 14 53.303 69.6 358. 0.096

1.1.4 4 8.000 8.09 16.3 0.004

1.1.1 3 4.755 5.24 7.3 0.002 0.095
1.1.2.1 4 8.000 8.09 16.3 0.004

1.1.2.2 5 11.610 11.6 29.3 0.008

1.1.3.1 6 15.510 15.7 46.6 0.012

1.1.3.2 5 11.610 11.6 29.3 0.008

1.1.3.4 4 8.000 8.09 16.3 0.004

1.1.3.5 9 28.529 31.5 125.3 0.033

1.1.3.6 5 11.610 11.6 28.3 0.008

1.1.4.1 4 8.000 8.09 16.3 0.004

1.1.4.2 5 11.610 11.6 29.3 0.008

1.1.4.3 4 8.000 8.09 16.3 0.004

probably be done without too much difficulty, but further experience with the
technique is needed in order suggest practical methods for handling this situ-
ation.

Vi
LN k

T
¢l
* . ."l.'

5.
'

3.2 USE OF DESIGN METRICS

T

4
]

Although design metrics can be used whenever design information is avail-
able, major improvements in being able to monitor and influence software qual-
ity will only occur when design tools and metrics are made part of an
integrated software engineering environment. The various Ada Programming Sup-
port Environments (APSEs) now under development provide an ideal opportunity
for application of these techniques. Although the metrics would provide
information of primary use to developers, program office personnel would,
using suitable contract clauses and data item descriptions, be able to request

ffc,"t"a'
S

.
N

quality status information at periodic intervals based on information in the
project data base.® This would be greatly facilitated if standards existed for
generating the required inf ormatisn.
]
A
?5 °
l’:
»
4@ 108 Automating Software Design Metrics
3
o
"~
e
;:\
e NN N AT AT AT TN N A T
RN - 2 A
\‘ " w ~ .t TS Y -

POl et 5

LG ~'.--
AT I



._-‘"- Lardl A L S A "._rkr-r__r..-r_:r.{f..“._r.'_*_._v_.'v‘.-_-:. VT T v -‘.‘.\‘v.:\ e .:,‘v';""‘:_ Q.~1-~x.w::‘.“‘_‘b.'_‘~_‘.“-.‘:.‘:.‘ -v‘g-ﬁ'—g:’\"."' T
=
L=

.._!

~

oo Table 25. Length Estimates for Design Two

N

£ Component n* v* n N KDS1I I KDS1I

N

- 2.1 13 48.106 60.9 300.2 0.080 0.080

:ﬁ 2.1.1 6 15.510 15.7 46.6 0.012 0.165

- 2.1.2 17 69.487 99.3 559. 0.149

| 2.1.3 4 8.000 8.09 16.3 0.004

&

:{ 2.1.1 6 15.510 15.7 46.6 0.012 0.167

a5 2.1.2.1 10 33.219 38.0 161.6 0.043

e 2.1.2.2 14 53.303 69.6 358. 0.096
O 2.1.3.1 4 8.000 8.09 16.3 0.004
{ 2.1.3.2 5 11.610 | 11.6 29.3 | 0.008 »

- 2.r.3.3 4 8.000 8.09 16.3 0.004 O
"-:. -;\.\_:
N e
:; ;;Q;ij
Y The uses of design metrics in the three earliest phases of the life cycle Lf?fﬁ
, can be outlined as follows: . @
;% l. Software Requirements Specification ﬁ:::J
e RO
o S
5 L Requirements are generated using a suitable requirements specifica- txlﬁx;
= tion language or tool. 1f the requirements are expressed as a A

ey
( hierarchy of functions with inputs and outputs specified (as per L
MIL-STD-483/490, type B5), then Halstead metrics can be applied. e

)
v
[
.

Alternatively, it is possible to develop a Halstead technique using

.

-~ a prose requirements specification, adapting the form used in Sec-

o tion 2.5.4.4.

':, . These metrics would be used to generate estimates of KDSI for com-

}: parison with KDSI estimates generated by conventional means.

e L4 Particularly complicated functions would be identified for risk

- assessment.

! L Review of these estimates would be a topic included at the Software

o Requirements Review.

\1

-

> :
.‘ - ‘
‘i Using Design Metrics, A Supporting Methodology 109

L

q

v, -
' N

A AL ey B LI, T R N A

> . - e '-.’ f.. . ‘f.'.'\




ST A R A R ot Bt R Rt N A R U RA As

YT

LRG|

RGN

2. Architectural Design RNy
R

e Structured analysis (or some other technique) is used to identify R
——y

objects for a DARTS process—based model, or an Ada object-oriented
design. The design is entered into a design database. At fre-
quent and periodic intervals, Halstead, McCabe, and other design
metrics are applied to the design data.

L4 The metrics are used to compare different design approaches in
terms of complexity and impact on project cost and schedule.

L The metrics are used to identify problematic, overly complex, or
inconcise areas of the design, in order to make improvements.

e The metrics are used to monitor the progress of the design as time
proceeds.

3
}7i . Review of these estimates would be a topic included at the Prelimi-
: nary Design Review.

3. Detailed Design

¢ The detailed design would proceed as a refinement of the architec- .ijf

tural design. The metrics would continue to be used in a similar j\ia

fashion. e

S

. Review of the metrics data would be a topic included at the Crit- Pt

ical Design Review. . @

It is anticipated that the chief value of the design metrics would be to Ej&
call attention to the impact of design decisions as they are made. The met- R
rics would supplement but in no way replace the judgment of experienced soft- }j}f
ware designers and managers. The ability to measure the impacts of design v
decisions and to institute corrective actions early in the development process i
would be a sign that a major improvement had indeed been made in the manner in ?;xj
which software products are designed and implemented. ;:::
SR

L .

T

..\__\

.-:.:‘

S

110 Automating Software Design Metrics

P YN
.

v
.
o v »

L N
‘- “- "l_"-.'.'.' .' .'1 )

.




4.0 CONCLUSIONS

.- This research effort has concluded the following.

¥
:
22

h " 1.

b
g
L}

oare

LYY S
PROAFRIN

ING
-3

_—

(]
O

DAY

Ay,
[o)]
L]

PAail” YN

I WA ARY P }I'-‘

o =

»
ra

2008

s

Software quality can be assessed early in the 1life-cycle with metrics
like those of McCabe and Halstead. The collection of metric data can
be automated and captured from the databases of design tools 1like
DARTS. However, the databases must contain the information necessary
for metric measurement in a form recognizable by the design tool. For
example, control flow or data definitions which occur in free-form text
will not be included in metric calculation.

Out of the approximately 100 McCall metric elements, about 25% are good
prospects for automatic measurement with a design tool like DARTS.
However, manual assistance is required to measure most criteria in the
framework since the criteria contain some subjective elements.

Metrics that measure data elements or some aspect of data-flow are gen-
erally more useful than those that deal with control flow, in the early
design phases. Interfaces between software components are typically
defined prior to the internal control structure of the components.
This would include, for example, Halstead's metrics.

When Halstead metrics are used during design and the Potential Volume
of each component is known, alternative counting techniques can be
developed which avoid some of the controversial issues surrounding the
Halstead counting technique.

Design metrics can be used when Ada or an Ada PDL is used during
design. Ada supersets, like Byron, are more useful than Ada itself
during architectural design due to their ability to represent abstract
concepts and include prose commentary.

It is still early to judge the utility of design metrics. Small exam-
Ples seem to work, but the size of the sample used for validation was
too small. A more rigorous validation effort might be set up as fol-
lows: During a real software development effort, use metrics with an
automated tool and sample software quality at frequent intervals during
development to get a better idea of how useful early data is for esti-
mating the quality of delivered software products.

A methodology has been presented for the use of gquality metrics during
design. In particular, it is possible to use counts of operators and
operands to estimate the length of an implementation in terms of deliv-

ered source instructions. From this parameter, project costs and sche-
[

Conclusions 111

‘. ‘.

i
)

g

’
S TN

‘
y

v

e Byt

PR
'

T vV
° ¥
)

¥y VY
P
[

<
X

NI N
TR
‘ 3
’
AdS
PR T T
v e
o ga e

PR

o

'y
LY

X
i.

‘
@

L2 -
-




dules can be estimated. These estimates can be reevaluated as the
design proceeds, in order to monitor software product quality.

.

.
-
+
<.
L.
<.
’

L
s oa s

“Tavs w8
o

]

112 Automating Software Design Metrics

v % ~
o e
STV ®

>
L

hY

el

et
. [ ]




;{:. 5.0 DIRECTIONS FOR FURTHER RESEARCH ﬁf”
s S
-_'u.‘ -, ."_..'
t‘ ]
DN As this study has shown, design metrics have the potential for improving T
3;« control over the software development process. This section lists areas in ﬁ}}.
::f: which future research would enhance the practicality of using design metrics. ﬁ{f‘
AN e
i{: The prime need is for verification of <the metrics from metric data col- :ilf
lected throughout the life-cycle of many real projects. This would provide a g ;
ot statistically significant database from which equations which relate metric Rt
-ﬂ}ﬁ values, planning parameters, and quality factors could be drawn. The examples RS
provided in the preceeding text indicate <that the metrics could prove useful, :{j&
- but they exhibit pathological behavior, such as extreme sensitivity to small -:&S
S changes, which would be eliminated with a larger sample. Incorporating metric Biu
tools into an APSE would encourage data collection. ®
.o "
'Sﬁ: Another area where work is needed is in relating the Software Quality H::
ﬁﬁﬂ Framework to other, more direct, measures of the quality factors. For exam- Qv:‘
?f} ple, reliability as measured in terms of mean time to next failure. Z:ju
N SR
o This research identified controversial issues surrounding the Halstead ; ®
e identification and counting technique. This evidence, as well as other e
o research, establishes the need to develop a consistent Halstead counting meth- g
::: od for use throughout design to deal with problems where the Potential Volume T
NN is not known. ;i(:
o
This report has addressed metric measurement of design complexity. Met- '>.
:a} rics could be developed which evaluate the efficacy of the design procedures: N
5j~ how the development methods used contribute to the quality factors. Similar- :f:*
;:f: ly, quality measurement could be expanded to cover the entire software, and fi}i
AN system development processes. A key support item for these endeavors is an }}g
- integrated database of real project data, from planning through maintenance, Y
1_ with data collection for quality evaluation as an integral part of the proc- @
- ess. SN
o ‘ Do
:f: Another area which might De covered in more depth is how tradeoffs among
o the quality factors may be measured and evaluated. This task was within the
s original scope of this project, but it was not initiated due to a decision to
?ﬁ consider Ada design metrics in detail.
A
gFQ Work should be undertaken to establish the best use ‘of requirements and
\ﬁ\ design media for Ada. Ada has growing potential as a software design aid
:ﬂ itself. This task should consider whether a restricted subset of Ada, Ada as
AN defined, or Ada with additional features (e.g., Byron) is more useful and
?. appropriate as a design or requirements aid.
. ‘_-' -'.\-':'
o o
s :':':':'
Sy Directions for Further Research 113 e
o ®
L NG
e o
. o
NS
. S

?uﬂ' .
.5'




APPENDIX A. GLOSSARY OF RELATED ACRONYMS AND TERMS

- 0
E: APSE Ada Programming Support Environment

éi AMT Automatic Measurement Tool

fj CACM Communications of the ACM i

- cDC Control Data Corporation

f} CDR Critical Design Review
E; COCOMO COnstructive COst MOdel

2 csc Computer Software Component :

53 CsCI Computer Software Configuration Item

f: CSDL The Charles Stark Draper Laboratory, Inc.

'S DARTS Design Aids for Real-Time Systems

N

5 DID Data Item Description
(t DOD Department of Defense

i ECSL Extended Control and Simulation Language

‘E ESD Electronic Systems Division

} HOL Higher Order Language -

; KDSI Thousands of Delivered Source Instructions

é PDL Program Design Language

; PDR Preliminary Design Review
;i PERT Program Evaluation and Review Technique

E; QA Quality Assurance

:; RADC Rome Air Development Center

- SQA Software Quality Assurance

: Appendix A. GLOSSARY OF RELATED ACRONYMS AND TERMS 115

‘

4

I A p S

A P A g S S S R R R N Ty NN NN LA N NN NLCRRS

C-;".-:?f
e :4.-'-.
Y
!
e
oA

AN

.o’



Software Requirements Review

Software Technology for Adaptable and Reliable Systems

STARS

Automating Software Design Metrics

116

A

A B (A

'y \\ n': ;

L A
[

NS AVSao et
' LAY

S
A TS l.-\‘:‘

G rmra-

ARAREE) AN

- -, . .

" {\ 3 .V'
b .I

‘
-~

.\\-.\



N

Pl ¢

r.. . rh_ ¥ .

~,

-

" o

-,

MRt

"*T

T

T

-

.w' .n'—.

RSN

A A S Al )
LR S .

LAC AR Al sall Sl i)

T

L i Ae dn S0 s Sh R e s

APPENDIX B. EXAMPLE DARTS TREES

riereeeev

PP LS,

[ g
~
—

Appendix B. Example Darts Trees

..
- ‘.
e

(N
T

SN
-,
ﬂ »

AVt

«
-~

WY

:' 3:'.-
NG
>

M‘A_{jg

o
U4
Sy

o
h..
W
¥ ‘A

~
-

LN N
~

'\._
=

~
AL

NN
o

-I\ l\ -.. I-

AR RS

¥ ‘...c. “"\.
A

“a
"

A

By




PN N AN a - J Ak v T ORI r - - .

.--..--.-.q. 4 . - .an LN A.-~....-.~.~.- . f o LN AL S

j » . ST g et N5 2 L@ X
RN XA XA : AR, A SRR SEILOLNOS g RPN AN d P e L X L AXNANL

> .

DATE: 22 MAR 1083
TIME 180331
TOPNODE: 3

ALL GENERATIONS

PAGE 1

4
-

- -’ -
3 g DN
%5 (P
3 § 3 / m 3 Ched
. @ P -n'n-.rv n'g
1.- m m - m II -
wv.” m m “ . “-nn” 3
. ] © . hd
8 & B EH
. m m m a. &
-, + @ A
y , [+ I
< PR
. %) Pl
(]
“ m >
. ] (=) AT
.. o b,
b o ~ e
L, o 0 & AP
r, £ bt 3 P
by . “ [ 9] s .--
< v e Y
3 a 3 ] 3 g ; e
X ; : & g § i
X : : g a ; A
m&. m m m % Q Vﬂi\-ﬁ. -
, ~ ~ g Q v
4 < 272
. § S e AT
" : ' 5 AL
F, ~ 3 A
o ~t ﬁ )
. [ ]
b [ o)
, r 0
Py =)
g o o
b = 2
3 b o
y ]
6
F )
=]
<

AN
CSDL ™ DESIGN AIDS
POR RERAL~TIME SYSTEMS

5
““
ﬂ. ®
\ 1
- —
o
bh. IQ. " 4 w5 w w k3
L4 ATl A SR AU W T W PN AN
gL e aAS LSy
rys ‘4 'y AN \. -.ﬂ\\\-\.Q\L.... 2




STETE

R R Tt
-

TN T T e TATNT R NENTE TR TN SN

[] RS
m g w )
3.5 g .
~8 B
8233 -
Bmwmm ‘
mmnmA g
n..-
v
3 o
8 * ) .73
5 | " e
E m A
w - . nr
i m

BILLA EQ 000;

Appendix B. Example Darts Trees

IF QTY GE 500
THEN

THEN BILLA £Q BILLA
+ 050

THEN BILLA EQ BILLA

Figure 18. CACM Example 14b, DARTS Representation

DESICN AIDS

-
DATABASE IS TISA
OWNER 18 AJRLI3S2

b ARALLRN, . SITRIRN, — IR e NN FIDTITIN OIS A T A IS




p— g e v - L aie - a e - Pab i e d aodh svnid wtdr s g arhd e o) L ahik o
AL b at sl aAcah S AGAL ML ALALALACHUATE AL AL AL EAS AT AALEE SR WAL TLOLSEEAICAR A L LA

e
3
"
oy (SDL * DESIGN AIDS PAGE 1
SN FOR REAL-TIME SYSTEMS DATE: 22 MAR 1983
PR PLOTTRER (FIXED) TIME: 180420
- .,\ DATABASE 18 TI3A ‘TOPNODE: 2
~ OWNER IS AJRI32 ALL GENERATIONS
-~
o IPXGEY
v -

IS Y LARGER

IS X LARGER
THAN OR
EQUAL 10 2

THEN IP Y GE 2 ELSE IF X GR Z

YES, THEN
SMALL EQUALS
z

NO, TIIEN
SMALL EQUALS
X

NO, SMALL
EQUALS Y

THEN SMALL EQ Z; ELSE SMALL EQ X

Figure 19. CACM Example 15a, DARTS Representation

<
b, 120 Automating Software Design Metrics

'A.‘

o N
wh - "
"&‘:‘. oLt

~ -~
-~ FED,

.- ~
- STy
ASA) YA
Q) fol A

Pl

®

o
.S
A W AT " A T &Y e T AT AT TN
Ta N AN AERT AL AT W,
REIC I AL AT Ay A LA A AL L
A A R o S R

SIS

/]
z;
>,
K,

I WA

S



C A, 3 .
4SRN : ..\ = ......_ \\..\\
(oA AN AN u\\\. v, LA K
\\\u- .‘\\o\-p [ 3 ’-.-l.\.-- v .-s«.ﬁh\\\ P-rn—a snh\\ s F M Tals --.-..-."L..-_ \-\n\i
¢
[}
: B o N
. s -
. 151
i 333
¢ R
g Lawmﬂ
: EEEM 3 @
. &5823 9 m
i nE 3 E
N -
=z | 3 0
N N a O
. n - .
3 aF 5 4 = ]
. n 2 o o] o
. . g2 |\ g M Q
E 3 . i 9
. uw 3 b 2
y LR 7R ] 7 % 2
: z 3 g
E [ -
N (4]
. a,
- e -
- [+ m
[7] »®
& 3
< o
. a o
. &
a <
: (T3]
4 -
: o
) —~
: g
: 2
(4]
i- M
. [ @]
<
] (3]
o
o
)
, e
r. 3 &
; zd . . 2
; <
z2nzd . b
; SuBf
4 Mﬂmwu
3 .._un ™
1 <R3
: ummm
. R
r 4
’
P
ﬂ. .
--.- \‘. !w et .- .n ¥ .~ e 0,0 00 .o, -. .. e CEC I I I 7 - a - . - " e - -. eyt e
BVIAY. B WXARRRI s PN , PRI . LSRN\ SEOOOADDL . _ RO N Y YRS A SR LD L e d PN




| . 2y % Y B T
’ ‘.. --u‘\ﬂ(-v.,n-hﬁ.-.qn-.-.-
-—w- -A\.-h,- --‘-.~ \l

.

‘e \\\-\....o\

[}
SR ,l\..x...........




oAt
LA

LS
CLLRRRELPNC

(LA

()
2"

4

-"P.n h)

Ol
AN

.
.
s

N r3
AN Y

MO A AN PR el

APPENDIX C. DARTS PL/1 HALSTEAD MODULES

C.l DESIGN TREES

Figure 21 is the design tree for the implementation, in DARTS, of the Hal-
stead metric. A description of the top four generations of nodes follows.
C.1l.]1 Node 9

Processing

for a
The

The Halstead module determines the Halstead parameter values
user-specified subtree of a design represented as a DARTS tree.
user also selects the counting method employed.

Input
Database representation of the tree.
User-specified top node of the subtree to be analyzed.
User-specified depth of the subtree to be analyzed.
User-specified counting methed.

Output
On file FLOERR, the subtvee designation and counting method, and the

parameter values for the subtree.

C.1.2 Node 9.1

Processing
This node represents a recursive invocation of a tree traversal mod-
ule. The tree traversal module visits each node of the user-specified
subtree, collecting the numbers of operators and dperands.

Input

Database representation of the tree.

Appendix C. DARTS PL/I Halstead Modules 123
N
* '\ T '. ‘-. ‘\' - .I...‘v' ..'-:.;-_'-!_'.n_‘-.‘bu" .~ LR

‘y

4 f.f s
:"",.",. .P",.

ff-



el
DR N P

0 .

[TLT]
(Part 1 of 2)

SIMPLR

WHEN(1Z WHEN(2X WHEN

(&)

INTERPRETIVE
CONTINUED
ON PAGE 2

L2

UNINTERPRETI

VE

Figure 21. Design Tree for Halstead Metric.

Automating Software Design Metrics

. " ks \
Mmmmm : : .

BrEe3 i)k 1z
% ' Mmm.. mm <
7 g8 N
r... mmn.mm l :
3
r“—
b
-
J .L........”.a....“...x....... A AR ATSA AAL A AL .* . .r

s ....»_1....

. . 'y . . o’ o
RARANAIAL & A AR A A N

N JL.-!- [




L8
*
KL

2

N

. [ 39 ]
ol
- »

o
o

.. .l .ﬁ *

S,
et

A
.‘.".1- [N

.
.

rPersl
AASEGION

1@

*
14
-

S0
-

CSDL ™ DESIGN AIDS

OWNER IS AJRI3S2

YESMUST BE
A PUNCTIONAL
NODE
A211 A212
INCREMENT ADD NAMB TO COUNT TAB
FUNCTIONAL OPERATOR OPERATORS,0OP
COUNT LIST ERANDS
FUNC#=FUNC#+1 CALL ADDRATR CALL PARSIT

DECI#=DECI#+1

NOMUST BE
DECISIONAL

INCREMENT
DECISIONAL
COUNT

PAGE 2
CONTINUED FROM PAGE 1

o .
> 5

P
W

Figure 21. Design Tree for Halstead Metric.

(Part 2 of 2)

Appendix C. DARTS PL/I Halstead Modules 125

-

- .. S )
" ., ST Y LY s 3
o .-};_\.-:.-}.- '.‘:'.J-_‘.-_".‘\{‘:-}.-\.-\ hat

-

. NN
o Vet . RN AR
e N N

f".r' r“n‘
A
o'y

oo

rrr

v.‘
L4
v

.
y‘ _."‘

L]

DR
» )
*';4.{4‘1-

’-' :. .l. o
o

LA N )

e
.l




i
-
Current top node of the subtree to be analyzed (initially the : y
user-specified top node). >{:1
User-specified depth of the subtree to be analyzed. et
User-specified counting method.
Output

List of operators with counts for each.

List of operands with counts for each.

A A
a

C.1l.3 Node 9.1.1

SR A TR AN
RN 3

Processing

This node selects a counting routine to call depending on which count-

L

ing method the user specified. ;

_ NS

Input !
P | 3
User-specified counting method. :g
Output -

NS
*

C.1.4 Node S.1.1.2

Processing

This module implements the simple counting method in which the vari-
ables in the INDATA and OUTDATA lists are counted as operands.

Input
Database representation of the tree,
List of operators with counts for each,

List of operands with counts for each.

a & "
v
.

output

ot

v
“‘l " .l. 'I ‘l "‘ .

-
»

List of operators with counts for each,

Y Y

List of operands with counts for each.

XX,

~.

126 Automating Software Design Metrics

a
el

Q"

1

2 & %

[3
(O )

LY, 0 e 1
LA AP

-
“
-
~
.
“~
-

:' . ) 'v’:'; e 'l‘ '."

P L A Y . .’ . ~.5 . " .
- - LIS P .\_-.._. [ R
Tata i At fe Cata e T ey e L



P N

"

BN, " RERERIDD

AP SOOI

»
(]
s 4

e

AN MDA M )

C-1-5 NOde 9.101-2 .::.»'

Processing AL

'.l

This module implements the uninterpreted counting method in which
nodes are differentiated as being function or decision nodes, but the
node tabs are ignored. For function nodes, the variables in the INDA-
TA and OUTDATA lists are counted as operands. For decision nodes, the
variables in the PREDVAR lists are counted as operands.

ALY
o
" [}
a X

¢ "
L} .

8 "

*f Lt
RN

.

Input

e % '7"- »
.‘l’l'.’-’
PR

-y a l'l
P AR

Database representation of the tree.

e 2
’
¥
»

*Tee

'_'- .,\_: g

List of operators with counts for each. L
List of operands with counts for each. ;_:tj'
At

Output DA ¢
.-}‘.f:;'.

List of operators with counts for each. pRSLA

.5" - -..'

List of operands with counts for each. {?"g

e 7

C-l-s Node 9-1.1-3 "...'..:‘.-

Fatad

Processing .- "

i NN

.'_ -“ o

This module implements the interpreted counting method, based on the .,~:{-:.:-

specification in Section 2.3.2.2, in which the node tabs are scanned :}:;c

for instances of operators and operands. INDATA, OUTDATA and PREDVAR \f{{}

lists are used to determine counts of operators and operands. The f}ﬁi'

details of this processing are shown in Part 2 of Figure 21 on page s;ﬁJ{

126 ")j':::.-
Input :

Database representation of the tree.

List of operators with counts for each.

List of operands with counts for each.
Output

List of operators with counts for each.

Appendix C. DARTS PL/I Halstead Modules 127

B

hY
e
T
.
.

o s




v %t %

a s’
e u

8~

N

RS

AAARAAL

F AN

ALY N
s a"a"s s

s
i

el
et <
» [

B
3
v

e
WSl D
[ VG MRS

s % e T M 'y

-
o
..
-
.,

List of operands with counts for each.

C.1.7 Node 9.2

Processing

This node adds the occurrences of flow-of-control to the operator
count, and calculates the Halstead parameters from the basic operator
and operand counts.

Input
List of operators with counts for each.

List of operands with counts for each.

Output -

Halstead parameter values.

c.l.a Nme 9.2.1

Processing

This node calculates the number of flow-of-control instances from the
number of nodes.

Input
Number of nodes traversed.

Output
L ]

Number of flow-of-control transfers.

C.1.9 Node S8.2.2

Processingi

This node adds "CTL" to the list of operators.

Input

List of operators.

128 Automating Software Design Metrics

[l 1'
.‘ -x’l
AN

R

I

.l.
nJ

.f."i
g lt'l

7
‘:":-.“‘.1
A

[ ThoRS

D

ﬁl .
A

AR

TR
.

AP
L3
]
LN

~

o

b

‘.

-

.-

(%

.

.

LS

‘h _- .l

D
R
PP

R
N

NG,
Al
» n\ |



A e
7, {l'l-l/l,

s

[N ISR I Sl 3¢

NOOIE4

.

o
v e

IRPATRIAIR IR

[T AR e RPN O

.
‘- 'l 'I 'l v

~

N

DO

a a8 4

v St h

LR AN

DN

At T4}

output

List of operators.

C.1.10 Node 9.2.3

Processing

This node adds the number of flow-of-control instances to the number
of operators accumulated for the subtree, depending on the counting
method being used.

Input
Number of flow-of-control transfers. )
NCYAS
L A
List of operators with counts for each. :j?ﬁf
oo
output PSS
s AR
-

List of operators with counts for each.

C.1.11 Node 9.2.3.1

See Node 9.1.1.1.

C.1.12 Node S9.2.3.2

See Node 9.1.1.2.

C.1.13 Node 9.2.4

Processing

This node calculates the Halstead parameters from the basic operator
and operand counts.

Input
List of operators with counts for each.

List of operands with counts for each.

Appendix C. DARTS PL/I Halstead Modules 129




G o% ars Il#

ONOET A
.? AL

< R .\Nhu\-‘bun\- .
s b 'y -vvn

! 2

)

= o

o g

@

2 C :

t -

9 3

+ p=

g D
s ° o

e B
p :

- g
" o
b L] =
F.' l u

3 0
. a 8
., [ ]
—... o .Muu
. s '
l" n

")
k. b m

e )
y, o ]
P, o = n
3 m o O
o -~ ] -t
: : 2 4 :
”.. A, R >
- o) ] m =
5 o 0 ]
y 3 . V™) &

. t o

s 173 /1]

, u — Q aoe 0
. [ o 3 S0 @
, 3 o - a o a

[ Q L

. > o > £ 0 o
. = D w

' e o ] o
. @ 0 <
. o ") + 4+
) g g 8 g8 &
A byl &5 0
. m o ~ ]
» o ™ [ ]

X 5 3 g 3° )
o . o Be b 7
P .“ ® L] (/] Ev]
F Lo ™ 0~ o [/ o
F b of o =4 9 iy E
" Y] oL 5 L™ ] w © Y]
i 8 B s § 4 g 2
X P n.-m w o Ho oW s =3 O

. “ = 4] N. w.

5 5 « 2 5 3 o
2 8 Al = = 8
2 - -
5 .

, O

v--q

W\-

v..
& . B R X AR
‘v . . » R NERRE -y DRI 4 ML ALy .:.-.....\.M..f.- b
ws.....l.;. . Wt ..--J...-.-...- '-.‘ o s, o4, -,. l.\,...\....- E o \-« — " ey LN \\ \ ‘ \ Y —’ * -n ’bh- v T IV IN )



e
@l
IR AR

AN

O DL IS

(
e

NS

A
o I'.Al’ :

' %%

QJ.W{,

™ ) ) y.-
RAAIA Py 4
Jﬁﬁhﬁﬁ‘ﬁﬁ%ﬁtﬂ?

"
o f'c

Y

~ l‘
O
LY A

®@:

e N
.

APPENDIX D. DARTS PL/1 MCCABE MODULES

D.l1 DESIGN TREES

Figure 22 shows four levels of the design tree for the implementation, in
DARTS, of the McCabe metric. A description of each node follows.

D.1.1 Node 2
Processing

The McCabe subtree determines the McCabe metric interval bounds for a
user—-specified subtree of a design represented as a DARTS tree. The
user-specified subtree is a module by definition, for this metric
evaluation. A module info data area is created and stacked whenever a
module is encountered in the user-specified subtree, as indicated by
"BLK" or "“SEG" in the node%} tab. When the end of the module is
encountered, an output line is created from the data in the module
info data area, and the data area is popped off the stack and
destroyed. Running totals of the numeric quantities are kept for the
subtree being analyzed. They are printed at the end of the process-
ing.

Input
Database representation of the tree.
User-specified top node of the subtree to be analyzed.
User-specified depth of the subtree t¢o be analyzed.
Output

On file FLOERR, the module name, number of decisions, number of simple
predicates and metric interval v..ues for each module encountered, and
the total metric interval value for the user-specified subtree. Mod-
ules which are invoked, but not present in the subtree, are tagged
with a message instead of the metric interval value. This information
shares file FLOERR with the Halstead metric output, but each function
starts a new page when invoked. -

Appendix D. DARTS PL/I McCabe Modules 131

AL S CUL PR LU PP L U PO E . - - -
B e e T v TE M A A A L A RSy

MR -~ TR .
J'\- \:.\ \J‘\ '\I_.-. RN »

.
AP N

..
Y
“»

XN
N

PR
e s
.
LA

o -
a T
*

"
o e
L
DN

A
7’

. - »
rl e
. LI .
PP »
e
o 4 L
"

.
bl n o

LN 4

L 4

L ]
NN A,
. JNE,

.'w. .':’» [

-
\-
‘l

"f ':'I

b
.‘t
N

o
L

i Y
¥

K;rfw

JdJe

k] .'!’ S
[ ]

.l""' -~
'ﬁr' 'f'f.t' .
MY A

r
!

AL

L ¥

.,,uu%a..w
S IR
NN v
* f .D.I

s
_

-
.




» . r\.-\-.-..-.....- \---. ‘ 4.7, ..-- M
[ R0 SRR AR L PR I 20 P

*

2 AUG 1983
TIME D300
TOPNODE: 2
ALL GENERATIONS

2%
PORMAT
OUTPUT
WRITE OUTLINES,
ALPHA SORTED BY
-
. L J

'ON

MCCABE
COMPARR SEG
Vs Inv
L]
PUT MSG IN OUTLINE
INV'S W/0 SEG'S

Dl Sl 4

S X

Figure 22. Design Tree for McCabe Metric.

svegecy

ANRAS

Automating Software Design Metrics

e

DESIGN AIDS

., )
. ' o
x a
&

] B

2

F .

.

‘.

y - .\-\‘c\-\.\-q..q- ) .A.-;—.I.»..h.n o

r. LN
At
. r\..\-ﬂvn .-\.- N N

<« RN NN
2L

o




e D.1.2-Node 2.10

Processing

' M
L 2 H
s
L 24

. The Initialize subtree starts the output with a page header on a new Q{’
- page. ‘:':':':i
h vl
Input :-‘-:-';

. @

None. AN

Output ﬁkaé

. e
Page header on file FLOERR. K

:..!-{

s

D.l.3 Node 2-20 .‘:'-‘:.;

AANK

Processing :?w\l

r,:r".

The Traverse subtree subtree visits each node of the user-specified “.

subtree, collecting the metric data, and making the output lines. It 3’{2

also collects lists of the modules which occur in the subtree, and the Qﬂ;g

modules which are referenced in the subtree. fij?

Input
Database representation of the tree.

User-specified top node of the subtree to be analyzed.

User-specified depth of the subtree to be analyzed.
Output

Linked list of output 1lines for each module which occurs in the sub-
tree, alphabetically ordered by the module name. Each output line
contains the module name, the number of decisions, the number of sim-
Ple predicates, and the metric interval value.

List of modules invoked in the subtree, in reverse of the order in
which they are detected.

Appendix D. DARTS PL/I McCabe Modules 133

-
<
s
<.
.a

o
A

NN

L] L}
INARNA R NS

| @

Wy Wy & - Ny et W e T e, o o ‘e Yt a . "
.\“"“ - SRRy -\: ‘e *". . : s Ve "-".- '.;\"-."-?".. o~
. . . . LIPS PR I

N e r e m e a i, ., R AN
o w".'__.:,_.:_‘.:,'.t_.:.:./: IO AL R ARNC A ::,..-\.:\-r.‘ .

.....

gy
‘l

-
Cd

?,
.'t




SRR AL & L AR

D.l.4 Node 2.20.10

Processing

The Node visit 1 subtree determines whether this node starts a module,
whether it irfvokes a module, the number of decisions (possibly complex
predicates) for the node, and the number of simple predicates for the

node.
Input
Database representation of the
Current module info data area.
List of modules invoked in the
Output
Current module info data area.

List of modules invoked in the

D.1.5 Node 2.20.10.10

Nt )
s %
at et Tttt
I e O

¢ e e

LSRN
.

-

(A2 >
AN 'A."I’J

Rl S
‘l I.
Ve

'
-
4

i

1

P
Lahas

TN

-----

Processing

tree.

subtree.

subtree.

The Get module pred info from tab subtree determines whether this node
starts a module, whether it invokes a module, the number of decisions

(possibly complex predicates)
predicates for the node. It

modules, if this node invokes any.

gets the information from the
not start or invoke a module;

also adds

for the node, and the number of simple
items to the list of invoked
If there 4is a tab on the node, it
tab. If there is no tab, the node does
the number of decisions is determined by

the node type and number of offspring; and the number of predicates is
the same as the number of decisions.

Input

Database representation of the tree.

current module info data area.

List of modules invoked in the subtree.

Automating Software Design Metrics

PRI IS PR R IR PR S T T Al i R o I S s S ST Y
AT A S QAR KOS

L I I LR I I O T A e _‘:‘.. *

Y b - g LS K . ae
AN AN IO LA A

"
-

..“,
)

LA AR N 4
« %%

[
0

AR

)

KA

{

»

LA e IR St i)
R
MO
Yy "y et N

ar

PSS,
AN,

\ ..’.'. °



Output
Current module info data area.

List of modules invoked in the subtree.

D.1.6 Node 2.20.10.20

Processing

The New module processing subtree creates and initializes a new module
info data area if this node starts a module.

Input
Current (0ld) module info data area.
Output

® Current (new) module info data area.

D.1.7 Node 2.20.10.40

Processing
The Accumulate for this subtree subtree adds the numbers of decisions
and predicates for this node to the numbers of decisions and predi-
cates accumulating for the current module.

Input
Current module info data area.

output

Current module info data area.

D.1.8 Node 2.20.20

Processing

The Jgaverse offspring subtrees subtree recursively calls the traverse
subtree module for each of the offspring of the current node.

Appendix D. DARTS PL/I McCabe Modules 135

-
N o
B " s

SCRCAAY

>

- - - - - - - - . ) \
A AR SR SSRGS AN
X T O,

e NI S DN SR INEN T

{
i o
R,

PN
v
AN
\ ) 'r,l._

%>

[A
I&I "
Ay

it
vile

[

PN

.
s ‘s

N TR e e e T
I' .
v t
.

A
)

J

PPN I
PR RN
[ e T I

P

DN

ar o,

« &5

r{ "f.

f-.')k'fu'q'.'



Input
User-specified top node of the subtree to be analyzed.
User-specified depth of the subtree to be analyzed.
Output

Linked list of output 1lines for each module which occurs 4in the sub-
tree, alphabetically ordered by the module name. Each output line

contains the module name, the number of decisions, the number of sim- :1§uf\
ple predicates, and the metric interval value. };y,}
. e "‘{

s

-
a

.
o

List of modules invoked in the subtree, in reverse of the order in
which they are detected.

D.1.9 Node 2.20.30

Processing
*Q

The Node visit 2 subtree does any processing necessary at the return
through the node. 1In this case, it turns the current module info data
into an output 1line; destroys the current module info data area; and
adds the numeric quantities for this subtree to those accumulating for
the total line, if this node is the end of a module.

Input
Current module info data area.
Totals data area.

Output

Output line for the current module, containing the module name and
metric interval value.

Totals data area.

D-lolo NOde 2.20.30-10 R R ) .’-\;:
I

Processing }ﬂ§$.
IRGACA

Tne Make output line and cleanup subtree turns the current module info
data into an output line; destroys the current module info data area;

136 Automating Software Design Metrics

\' '\.‘\
_~. A AN
AT A

N N ARCRES
\ ."'"\“‘.""-:"}'-1\
QX Y e

A
Y




e S e e e M M A A A AR S A A AAL LA A & D L A A o)

and adds the numeric quantities for this subtree to those accumulating
for the total line, if this node is the end of a module.

Input
Current module info data area.
Totals data area.

Output

Output line for the current module, containing the module name and
metric interval value.

.

.
L
v v b

Totals data area.

»

: "-'.u ;
AT

D.l.11l Node 2.30

Processing . ' N

RN

The Compare SEG vs INV subtree creates an output line for every module __
which was invoked but not present in the subtree. ;Qf;f
-’::;';‘.:
Input o

Y
x

PR S
Ky 7~

el
? s
a) e,
)

'

List of output lines for modules present in the subtree.

List of modules invoked in the subtree.

~f 7

output Ty
A
List of output lines for modules present in the subtree, with an out- baho

put line added for each module which is invoked, but not present, in
the subtree. The added lines contain the module name and a footnote
reference number.

Flag indicating that the footnote message to that effect should be
printed.

D.1.12 Node 2.40

Processing

The Cleanup subtree makes the total output line for the subtree ana-
lyzed.

Appendix D. DARTS PL/I McCabe Modules 137

LN

-

YA NI

J

- e
PADAS
K RARAN
) ALY
‘A V. ..’.'
» A R

G LA e D R P X K4 A N A S AT A A AN
Y ‘ .- T e

Y
R SN AT A A A AR
OO A A AT AR K 2 AU T A




il ;-_—7“1;-‘.1_ LA ardl o rq-r."'.-'-.q:;.' v -y ‘2 A i

N Input

Totals data area.

Output S
Totals output line. t_.:_.
o
o
L- \n
D.1.13 Node 2.50 ®
NS
Processing :';-'_f‘_-
The Format output subtree writes the module and total output lines to "‘-:
the FLOERR file. L
9
Input
Linked list of output lines for each module which occurs or is invoked
in the subtree, alphabetically ordered by the module name.
' "3
e Totals output line. o
1.‘_':\ ::.
M Footnote flag. | ‘,T:'i\
'\:_\ ACRAE
Y -
=" Output N
:": . .r\_;
On file FLOERR, the module name, number of decisions, number of simple o
predicates and metric interval values for each module encountered, and :}f
the total metric interval value for the user-specified subtree. If .-:}.‘
indicated by the flag, the "invoked but not present" footnote is :,_-::‘_
printed. Y
M
He
:‘-4-':-
i: Lt
o
®
2y
ey
- ju.f'.
.\_,.t
RheS
. DR
.. A
. 2
w2 R
e 138 Automating Software Design Metrics :..:;
.o o

@
r“'..

?.or 2
>, N
e
“. A
*-.f h\'.-$
o R
«, " »
"2 ’sf\
Ju¥ K} .L [ §
-‘.
: %3
S OO R N f ST T TR T TR O SRR S O R, e
LA VR A \ ’ SIMANLRLARORGCLELAN Bt

"o SARLSES B
.}-V.Q ‘. \_a~ W 5 > '-f‘-* o~ ’*f" “u

", [ "' o



J B , AN -.... ! < i N e -...-.s......-.-. P LS il |.: a s,
[N .r ...-.\ ......... ' .’ o Y .... ..”1.1 Xh .......~. 272, &.-~\...,. o ..A. O rat JEY 4 .\..h. o -v\n-.-\f\f\.\.vé ot o
JRR AN B AT RPN MY RS NS "

AR A I Y LSRR S | p b 2N LT

.

139
!‘.‘«:
e

W
ke,
"
.

-
)

o
R
-

LTS
- «
-

...-l. Al
Y

T
™~
Y

o
o,
y

oLt ot
RRCITN N
L

.

Vo
MNP

-
A
T
X)

\)

L

o
TSR
« LEX

2 9S)

*
CaC ¢

.

2

‘o
»

™
*\
P

»

Appendix E. DARTS Data-Flow Tables for Experiment Controller Example
LA
.I
L}

APPENDIX E. DARTS DATA-FLOW TABLES FOR EXPERIMENT CONTROLLER EXAMPLE

PP ~ N P N e ‘. .\u....-\.-\......-.....‘..\.c M\J\W\J\)\JMJQ \f\f f\,o

N R " Yy ..»n. RN NN




Table 26. Data-Flow Table - Design 1 (Part 1 of 2)

| PR
@ v

l‘l'

o

it
x

Lt

4

Awts » s

L

A
LI B4

P RERE g8 oF

s
.32 - .
g8 § B 5
¥ THHE 1 HIANAE il
o2 [0 | (B s e [E]Jal)3) | (3
I I AF Ll Ll |
g elele K Z o2
: g0 | le 3 B el lelgl |3l
uumm 5 . 3
mwmm WW‘_T-U—M [ m W m w
mmwm aeiel B s : mmmm )
HEHEE HEHBIHEIHHH
«|4 <
HERE AP HE
- EHHE . mm,_w“_
m £l 18I Hlale ls | sl LES lslElE
" ] 1 ; :
g 8 - 8518 . e (ElE Al
| 1IN AL R
128 m 3 & m 5 E 1AF1M
i HH R THRHELE
jas HHE § mmwlml..mmmmm

¢ 4 s e @
vF 0,
v % fe

LSS

Automating Software Design Metrics

140



Table 26. Data-Flow Table - Design 1 (Part 2 of 2)

o CSOL & DESIGN-AIDS TOPNOOE ID: 1.1 PAGE 2
N FOR REAL-TIME SYSTEMS ALL GENERATIONS DATE: 08 SEPT 198
o DATA FLOW TABLE DATABASE IS: SAMPLE TIME: 11:21:39
WA USER IS: AJRIZ92
h.‘_
o RAME ™euTs PRODUCER ouTPUTS CONSUMER
N {CONT }
< frem I
MEASURE 2 MEASURE 2 CONPUTE 1
- LIsT 1
v, SENSOR_DATA  |GET CELL DATA 2 COMPUTE 2
AR r LIST 2
‘.
CHECK FOR USER INTERRUPT SINT_U SUPPLIED USER_INTERRUPT |USER INTERRUPT PROCEDURE
:;_.; |user nTERRUPT PROCEDURE Juser_INTERRPT |cHECK FOR USER INTERRUPT
NN COMPUTE 1 [usuus TABLE  |MEASURE 2 STATISTICS LIsT 1
- usT 1 ﬂnssuus ,_TABLE [MEASURE 2 EXP_STATUS SEND LIST TO PRINTER 1
"t STATISTICS COMPUTE 1
A
ke SEND LIST TO PRINTER 1 EXP_STATUS usr SEXP_STATUS  |REQUESTED
3
CoNTINUE
TEST MEASURE READINGS INITIALIZE EXPERIMENT READINGS TAKE MEASUREMENTS
TEST MEASURE TEST MEASURE
|mome experzmerTs |exe_cour |more expERTIENTS |exe_coner CONTROL EACH EXPERIMENT
MORE EXPERIMENTS
STOP TIMER ssToe REQUESTED
COMPUTE 2 RESULTS_TABLE [MEASWRE 2 |srarzsrics LIST 2
LIST 2 |nesuurs_tanie  [neasune 2 REPORT SEND LIST TO PRINTER 2
STATISTICS COMPUTE 2
SEND LIST TO PRINTER 2 {revonr LISY 2 SREPORT REQUESTED
-q.)
.
A}
*‘
- 1]
o' :
- . :.-_ -,
A 2 \!.,.'.
.. . " '. I..
a e
s
- o

b

Y. L)
o
1.': :..:vf.J-;
‘-:. . ar 5,,
w - &
\:. ""{:
AN
PP (4.3 0
...- .
:j:: Appendix E. DARTS Data-Flow Tables for Experiment Controller Example

o

>

N

"
P!

"

)

i~

e

N Jid NN, '- A
*W \ .'t'b,. ,-\f\ I i n:n’f'- N S

T ,K‘ ',\5\\‘ .Q‘.'.-‘.\. s s




Table 27. Data-Flow Table - Design 2 (Part 1 of 2)

A4

v

) 2

L XUk g N %

o .

L

v

Rl R DL
L B

SN @ N
Vo R ,., ....w.u..u....m.m# J I
LS 3
3 AN :
g 2 m g m E
aa mmm 5 Mm 5 m o
«f o Sug = = HE
s | i 2 HE
2 m.mm #gd #cof # 38 £ mm 2E 3
a U
T 3
g g 3 & 2, § 3
: R 1R
§
M1 5
mmum, m_m_ 2 g -
mamm 33523 g F B m g
pasd|| : : HEHEHHEIRE
: ; HELEFLHEHIRE
2 §l2 2258)25) |8
~ m_ m 8 m m_
m g8 § (2| |8
ElE
i || ; s | I3
it || & g -
2ed || 3 : (18
gE3 E 5
128 m J 38 :
: i AHE
| 283 g ¢ & 2
]

)
.
AR Y

Automating Software Design Metrics

142

) AR PRSI G A s P A AL g




<

NN
vV

@

PR
.
UAFLIA

-

¢
N -
L A BN

g
\ PR

}'
AL

.
Y,

-~

iy

« v x5 £°1
P

"‘ -.'

- 'a
v e e
.

&

0
D
a [

)
2

4
,I“erl . .

2,

A

0 @

} J~}~

RS RIS ANTS Aot S b Bt AR R it St A ath

Table 27. Data-Flow Table - Design 2 (Part 2 of 2)

CSDOL #= DESIGN-AIDS
FOR REAL-TIME SYSTEMS
DATA FLOW TABLE

TOPNNOE ID: 2.1
ALL GENERATIONS
DATABASE IS: SAMPLE
USER IS: AJR1392

PAGE 2
OATE: 08 SEPT 198
TIME: 11:22-J7

NAME ™euTS PRODUCER uTPUTS CONSUMER
POSITION BURETTE STEPS INITIALIZE EXPERIMENT
ENOUGH
Isno MOTOR COMMAND SSTEP_CHD REGUESTED
MAIT FOR SURETTE INT SINT_B SUPPLIED
ENOUGH STEPS INITIALIZE EXPERIMENT STEPS POSITION BURETTE
ENOUGH ENOUGH
START TIHER INTERVAL INITIALIZE EXPERTMENT SINTERVAL REQUESTED
MAIT FOR TIMER INIT 1 anNxT_T SUPPLIED
[Marr ror TovER InT 2 SINT_T {suepLIED
TAKE HEASUREHENTS |reaones INITIALIZATION
INITIALIZE EXPERIMENT
_ TEST MEASURE
GET CELL DATA #SENSOR_DATA  |SUPPLIED SENSOR_DATA  |MEASURE
|reasume RESULTS_TABLE |INITTALIZATION RESULTS_TABLE |MEASURE
MEASURE COMPUTE 1
LIST 3
SENSOR_DATA  {GET CELL DATA COPUTE 2
LIST 2
POST MEASURE PROCEDURE FIRSTTIME INITIALIZATION
SET FLAGS
SET FLAGS FIRSTTIHE PREPARE FOR MEASUREMENT
FIRSTTIHE OR NEH EXP
POST MEASURE PRCCEDURE
|men_exe PREPARE FOR MEASUREMENT
CHECK FOR USER INTERRUPT stV SUPPLIED USER_INTERRUPT [USER INTERRUPT PRCCEDURE
= |usER INTERRUPT PROCEDURE USER_INTERRUPT |CHECK FOR USER INTERRUPT
COMPUTE 1 ' RESULTS_TABLE |MEASURE STATISTICS LIST 2
LIsT 1 RESULTS_TABLE |MEASURE E£XP_STATUS SEND LIST TO PRINTER 1
STATISTICS COMPUTE 1
=|seno L1ST TO PRINTER 1 EXP_STATUS LIST 2 FEXP_STATUS | REQUESTED

Appendix E. DARTS Data-Flow Tables for Experiment Controller Example 143

|

K
e

.

Pl

v

T T T
o
%

ERY
.
i
v
| ]

i

i
‘o

¥ .l- ‘
P .‘.'. 20!
N e el
M

v

LA

S
L

4
.

P

%’

‘I""{‘t
Yoy
~ g,

.0
2

‘l
4

: ':"l v 5y
1 ~ 4y '!':‘
! L

‘l
)y

v S

P
lll
'

N
('

2

A

p




RAR A A

g

- VLY.V,
AR ooy

o
4
A T'.o- .n. g

LA,
.
44/'ﬁ

v

LA

A

LIST OF REFERENCES

[Boe 81] Boehm, B. W., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, N.J. 07632, 1981.

[Boe 83al Boeing Aerospace Company, "Guidebook for Software Quality Meas-
urement," Vol. I1I, February, 1983.

(Boe 83b] Boeing Aerospace Company, "Software Interoperability and Reusa-
bility," Vol. I, March, 1983.

[Boo 83] Booch, Grady, Software Engineering with Ada, The Benja-
nin/Cummings Publishing Company, Inc., 1983.

[cai 75) Caine, Stephen H., and E. Kent Gordon, 1975. "PDL~--A Tool for
Software Design," AFIPS Conference Proceedings Vol. 44, 1975 National Computer
Conference.

[cai 77] Caine, Farber, and Gordon, "PDL Program Design Language Reference
Guide," Version 3, February, 1977.

[cho 78] Chow, T.S., "Testing Software Design Modeled by Finite-State
Machines,” IEEE Transactions on Software Engineering Vol. SE-4, No. 3, May
1978, pp.105-109.

(Cou 83] Coulter, N.S., "Software Science and Cognitive Psychology" IEEE
Transactions on Software Engineering Vol. SE-9, No. 2, March 1983, pp.l166-171.

[csprLg2] The Charles Stark Draper Laboratory, Inc., 12 January 1982.
Design Aids .for Real-Time Systems (DARTS): A User's Guide, ' Version 3.
CSDL-C-5441, Cambridge, MA. January, 1982.

[DoD 82a) Department of Defense, "Strategy for a Software Initiative," 1
October, 1982.

[Dop 82] MIL-STD-SDS Joint Logistics Commanders, Proposed Military Stand-
ard on Defense System Software Development, and attached Data Item
Descriptions, 15 April, 1982.

R-DID-107 Software Requirements Document

R-DID-110 Software Top Level Design Document

R-DID-111 Software Detailed Design Document

[DoD 83] Department of Defense, "Software Technology for Adaptable, Reli-
able Systems (STARS) Program Strategy," 1 April, 1983.

List of References 145

1S BLANK

PREVIOUS PAGE

-

Lol o

-

T T

‘_ﬁ ‘ )
-

"o

n -

Lo of Caf - -
\: \ ‘e \' '- '- \ i',"-’ fﬂ.{\ 1."!."(,' Y \f '\':. P
S

LSOOG S AN A AN
\iﬂﬁzbﬁbiﬂﬁkaihiﬁﬁﬂﬁdk OGRS

-
)
0

o

l..'l
W)

o "'*

5"
'




*
LAl

[N AN

A
KR
NIEAPREARNER

o
"

n‘."

(RN AN

1.
n

'l " 3
LN

4
I3

S A

XA
AT

[y
. '-:.‘.

w

v
4

.',- I

PR .

B
. Y N
'

.
P I

v

'
'
.
LIS

LR g

v M

L] .n\- .
D Sy

n‘.'n"'r'" € ¢
A

L

.
»
:
.
]

. . s tete Ty
5 St el
. .. o
. L I

'

¢ T .
€77

a1 v ] l‘
1- ‘t"-f';'}". »

YN

[E1s 78] Elshoff, J. L., "An Investigation into the Effects of the Count-
ing Method Used on Software Science Measurements," SIGPLAN Notices, Vol. 13,
No. 2, pp. 30-45, February, 1978.

[Fit 78] Fitzsimmons, A., and T. Love, "A Review and Evaluation of Soft-
ware Science," ACM Computing Surveys, Vol. 10, No.l, pp. 3-18, March, 1978.

[Fur 81] Furtek, F. C., J.B. DeWolf, and P. Buchan, "DARTS: A Tool for
Specification and Simulation of Real-Time Systems," Proceedings of the AIAA
Computers in Aerospace II1 Conference, October, 198l. -

{Gar 81] Gaffney, J. E., Jr., "Software Metrics: A Key to Improved Soft-
ware Development Management," Computer Science and Statistics, Proc. 13th Sym-
posium on the Interface 1981, Springer-Verlag, New York, pp. 211-220.

[Gor 83]) Gordon, M., "The Byron Program Development Language," Journal of
Pascal and Ada, pp. 24-28, May/June 1983.

{Gor 79] Gordon, R. D., "Measuring Improvements in Program Clarity", IEEE
Trans. Software Engineering, Vol. SE-5, pp. 79-90, March, 1979.

[Ha1 77] Halstead, M. H., Elements of Software Science, Elsevier North
Holland, Inc., Operating and Programming Systems Series, New York, 1977.

[Ha177a] Halstead, M. H., "A Quantitative Connection Between Computer Pro-
grams and Technical Prose," Proceedings of Fall COMPCON 1977, pp. 332-335.

(Ha1 78] Halstead, M. H. "Management Prediction - Can Software Science
Help?" Proceedings IEEE COMPSAC 78 (2nd International Computer Software and
Applications Conference), 1978, pp 126-128.

[Ha1 78a) Halstead, M. H. "Software Science -- A Progress Report," Second
Software Life Cycle Management Workshop, Atlanta, GA, August, 1978, pp.
174-179.

[ ]
[Ham 82] Hamer, P.G. and G.D. Frewin, "M.H. Halstead's Software Science -
A Critical Examination," Proc. of the Sixth International Conference on Soft-
ware Engineering,, Tokyo, Japan, pp. 197-205, September 1982.

[Ker 74] Kernighan, B. W., and P.J. Plauger, "Programming Style: Examples
and Counterexamples,™ ACM Computing Surveys, Vol. 6, pp. 303-319, December,
1974.

[Mcc_76] McCabe, T. J., "A Complexity Measure", IEEE Transactions on Soft-
ware Engineering, Vol. SE-2, pp 308-320, December, 1976.

146 Automating Software Design Metrics

*
e e T A T T T A T e T e, 8 e
. - " A . PR - - - -

NA AN
. )
N

.
[y

)
‘l
AN

b~
\" :.E‘Ar

.
. e
e

TN
'.'.- [

@)

'.'4' K '.‘

g,
1 ] t;,
R

b
I’ r :
‘I

/

nlf

R TPt W
. '«
v’

L
‘l. a, ..

l'Al
AV )
l%""
CRCU

o

Fons

P
» l':

g

1

.
@
.
’
.

LA AN
l S
.

- -

Ty 6,0 0,0V

PO f

s 't S %S,
VY )



{Mcc 80] McCall, J. A., and M. Masumoto, Software Quality Metrics Enhance- A

; ments, RADC-TR-80-109, Rome Air Development Center, 1980. o
\ [Mcc 77] McCall, T. J., P. K. Richards and G. F. Walters, Factors in Soft-

- ware Quality, GE Technical Information Series 77CIS02, June, 1977.

" [Mcc 79] McCall, T. J., and M. T. Matsumoto, Software Quality Metrics

2 Enhancements Final Report, September, 1979.

!- [Men 75) Mendelbaum, H.G., and F. Madaule, "Automata as Structured Tools

- for Real-Time Programming,"” Proc. of the 1975 IFAC-IFIP Workshop on Real-Time

v Programming , Pittsburg, PA. August, 1975, pp. 59-65.

- [Mye 77] Myers, G. J., "An Extension to the Cyclomatic Measure of Program

‘ Complexity", SIGPLAN Notices, The Association for Computing Machinery, Inc.,

pp 61-64, October, 1977.

- [san 83] San Antonio, R. C., and K. L. Jackson, "Application of Software
Metrics During Early Program Phases," Proc. of NSIA OSD Conference, Washing-
ton, D. C., February, 1983.

[she 83) Shen, V.Y., S.D. Conte, and H.E. Dunsmore, "Software Science
Revisited: A Critical Analysis of the Theory and Its Empirical Support,” IEEE
- Transactions on Software Engineering Vol. SE-9, No. 2, March 1983, pp.l55-165.

L [szu 80] Szulewski, P. A., M.H. Whitworth, P. Buchan, and J.B. Dewolf, Qual-
( ity Assurance Guidelines and Quality Metrics for Embedded Real-Time Software
Designs, CSDL-R-1376, The Charles Stark Draper Laboratory, Inc., May, 1980.

[szu 81) Szulewski, P. A., M.H. Whitworth, P. Buchan,and J.B. Dewolf, "The
. Measurement of Software Science Parameters in Software Designs," ACM SIGME-
. TRICS Performance Evaluation Review, Vol. 10, No. 1, Spring, 1981.

[Tau 77] Tausworthe, Robert C., Standardized Development of Computer Soft-
ware, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

[Tei 77] Teichrow, D., and E. Hershey, "PSL/PSA: A Computer-Aided Tech-
nique for Structure Documentation and Analysis of Information Processes Sys-
! tems,” IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp 41-48,
. January, 1977.

ACM Ada Letters, September, 1982.

: [Weg 82] Wegner, P., "Ada Education and Technology Transfer Activities,"

List of References 147




-3 BIBLIOGRAPHY
" BIBLIOGRAPHY

e
‘
§
(1) Barnes, J. G. P., Programming in Ada, Addison-Wesley, 1982.
"-'.:; (2) Beser, Nicholas, "Foundations and Experiments in Software Science", ACM
SIGMETRICS Performance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp
48-72.
_.5,;' (3) u. S. Department of Defense, Ada Programming Language,
v ANSI/MIL-STD-1815A-1983, 22 January 1983, American National Standards
o Institute, Inc., New York NY 10018.
L2
‘,:-
- (4) Downes, V. A. and S.J. Goldsack, Programming Embedded Systems with Ada,
{ Prentice/Hall, 1982.
o
R (5) Gilb, T., Software Metrics, Winthrop Publishers, Inc., Computer Systems
_§ Series, Cambridge, MA., 1976.
..‘- N
N (6) Gross, D. R., M. A. King, M. R. Murr and M. R. Eddy, "Complexity Measure-
2 ment of Electronic Switching System (ESS) Software", ACM SIGMETRICS Per-
N formance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 75-85.
jf'_ (7) Hartman, S. D., "A Counting Tool for RPG", ACM SIGMETRICS Performance
- Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 86-100.
oL
{ (8) BHowden, W. E., "Contemporary Software Development Environments", Communi-
N cations of the ACM, Vol. 25, No. 5, May 1982 pp 318-329.
SN
-::'_7 (9) IIT Research Institute, "Software Engineering Research Review: Quantita-
::-1 tive Software Models,", order no. SRR-1, Data & Analysi's Center for Soft-
- ware (DACS), Rome Air Development Center, Griffiss AFB, New York, 1979. NN,
:}: (10) Intermetrics Incorporated, Byron Reference Manual, Cambridge, MA 02138, AL
= August, 1983, ‘w:.'-.‘
Y RPN
e ‘\"--("-
) (11) Laurmaa, Timo and Markku Syrjanen, "APL and Halstead's Theory: a Measur- :::::-::.
- ing Tool and Some Experiments”", ACM SIGMETRICS Performance Evaluation WY
. ] Review, Vol. 11, No. 3, Fall 1982, pp 32-47. e
:,\':;.:_
fI:- (12) Naib, F. A., "An Application of Software Science to the Quantitative Mea- -':.'::
-j."‘ surement of Code Quality", ACM SIGMETRICS Performance Evaluation Review, .-:::-:.-
e vol. 11, No. 3, Fall 1982, pp 101-128. e
e @
'::‘ . g‘\l...
. b
. Wiy
N ‘t." .
::. Bibliography 149 te*
.. 1:\-\
4 [ ]
3 A
:\_. '.:_:.r_:
N }.-';E:
oY RO
# PR
::"' A W S L S L S A A A SR S LA SR L Y t‘b::‘.-\.
O X I A R g e T A e 1 S A S R LY E U O LA (R AT U AN
i ;. -~ .\,:_ i’ e (: :_,_; ~ ,-; v - t'»'\ ".:‘.:(\_;.‘,._. :':'4'}." AT ﬁ.‘_:\-:._r_ ) e, TN NN : STy
. L) ) » L ) . 3 » .




'T:."v LN \v;\'..r'_..r'\r..r\".“f‘.7'_"-"'_'.T_.r\-“{.w'.-f{.?\.—..‘V\‘-\;-. RUSCACIAC M AC AGLA S et g AN RAAA I AR AN A B 40 g JACHA 20 Dheple 2

(13) Schnurer, K. E., "Product Assurance Program Analyzer (P.A.P.A.) A Tool
for Program Complexity Evaluation (abstract only)", ACM SIGMETRICS Per-
formance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 73-74.

(14) Yourdon, Edward and L. L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design, Prentice-Hall,
Englewood Cliffs, New Jersey, 1977.

'. .l “

N -’.--’ L
- . P
- U ‘..
LY
‘l- e .-- ".
: e
LI .
o ARG
- A
SO LAY
'S L
L] ',i MY
. LI
Ca A SCILN
o« --'_'" -
[ [ S
WA g
LS “ .
Y

R
'@
.

150 Automating Software Design Metrics

4
4

% Y
N s
‘\“'.: ‘..\'-
‘» . . ... - 3
g L
VWOA ) o
g e

-\ e
S » -n'..‘J

I.'fﬁl-'.'.
RN

x

)
2,

b
v




[
3

.-

5 R
. K
-

o -
-"..

MISSION
of
Rome Atr Development Center
RADC plans and executes neseanch, development, test and

selected acquisition proghams in support of Command, Control
Communications and Intelligence (C31) activities. Technical

l. . l' . i l‘ .1. ‘A‘ ‘..' ., A.‘
1, 'J.Yf. ‘.-' K ‘.. W -‘

and engineering suppont within areas of technical competence A
48 provided to ESD Program Offices (POs) and othern ESD s
elements. The principal technical mission areas are % =
communications, electromagnetic gudidance and control, sur- 0, o

X TN

veillance of ground and aerospace obfects, intelligence data

collection and handling, information system technology, ‘ _:7
Lonosphernic propagation, solid state sciences, microwave e
physics and electronic neliability, maintainability and T
compatibility. S

e

5 .
3 ]
3 _._

..".'_'.
LT LS

3
-

’--

'- -

p

b'. N ._'-
b8 .

p . AR
-

A AN
b, - RNy
b o7 NCR
- . ‘et wm
" ., - -.- I~.
-- .I-
. AT
b . e
t . - .-.--. .‘
@ -3 L4
-t RS
. e N
l. . ‘b .h
o g
N e
b, . e
b, \':\'.
., .-
a2t




